Analysis and Evaluation of Nutritional Compositions of Barnea davidi
FU Zhiyu1, LI Dacheng1, BAI Yong'an2, YU Di1, YU Zhe1, WANG Qingzhi1, ZHENG Jie1
1. Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; 2. Panjin Photosynthetic Crab Industry Co., Ltd., Panjin 124000, China
Abstract:In order to fully understand nutritional compositions and edible value of Barnea davidi, the contents of proximate nutritive compositions, part of minerals, fatty acid and amino acid composition of siphon and visceral mass of B. davidi with body weight of (30.0±5.0) g collected from coastal Jinzhou in China were analyzed and evaluated by the corresponding national standard methods. The results showed that there was much higher crude protein content in siphon (75.45%) than that in visceral mass (47.03%), and much lower crude fat (1.68%), ash (15.23%) and total sugar (4.37%) than those in visceral mass. Only higher contents of sodium, cuprum and zinc were found in siphon than those in visceral mass. Both siphon and visceral mass contained 32 fatty acids, the percents of polyunsaturated fatty acids were 30.02% and 20.71%, respectively, with significantly higher perent of eicosapentaenoic acid (9.48%) and docosahexaenoic acid (14.97%) in siphon than those in visceral mass. A total of 18 amino acids were detected in both siphon and visceral mass, with the maximal contents of glutamate, aspartate and glycine. B. davidi had contents of essential amino acids (23.63 g/100 g) and flavor amino acids (28.50 g/100 g) in siphon, higher than those in visceral mass, with similar contents of essential and non-essential amino acids in siphon (53.43%) and visceral mass (56.59%). The first and second limited amino acids were shown to be tryptophan and methionine+cystine in siphon, which were determined by the amino acid score (AAS) and chemical score (CS). The essential amino acid index (EAAI) was found to be 66.38 in siphon and 50.14 in visceral mass. The siphon and visceral mass of B. davidi was characterized by high protein and low fat in nutrition composition, which provided the theoretical basis for the high value comprehensive development and utilization of B. davidi.
[1] 王祥初.海笋媲美象拔蚌[J].四川烹饪高等专科学校学报,2003(3):14-15. [2] 吴杨平,张雨,陈爱华,等.江苏沿海海笋资源及人工育苗[J].科学养鱼,2019(10):58-59. [3] 李生尧.大沽全海笋Barnca davidi Deshayes人工繁殖的初步研究[J].浙江水产学院学报,1992,11(1):48-52. [4] 魏利平,马明正,唐芳,等.大沽全海笋生物学习性及人工育苗技术[J].水产学报,1997,21(3):296-302. [5] 张婷婷,李莉,李琪,等.脆壳全海笋和宽壳全海笋的营养成分分析[J].广西科学院学报,2016,32(2):122-128. [6] 国家卫生和计划生育委员会,国家食品药品监督管理总局.GB 5009.5—2016,食品安全国家标准食品中蛋白质的测定[S].北京:中国标准出版社,2017. [7] 国家卫生和计划生育委员会,国家食品药品监督管理总局.GB 5009.6—2016,食品安全国家标准食品中脂肪的测定[S].北京:中国标准出版社,2017. [8] 中华人民共和国国家卫生和计划生育委员会.GB 5009.4—2016,食品安全国家标准食品中灰分的测定[S].北京:中国标准出版社,2017. [9] 国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 9695.31—2008,肉制品总糖含量测定[S].北京:中国标准出版社,2008. [10] 国家卫生和计划生育委员会,国家食品药品监督管理总局.GB 5009.268—2016,食品安全国家标准食品中多元素的测定[S].北京:中国标准出版社,2017. [11] LIU J, LIU Y N, WANG H T, et al. Direct transesterification of fresh microalgal cells[J]. Bioresource Technology,2015,176:284-287. [12] 国家卫生和计划生育委员会,国家食品药品监督管理总局.GB 5009.124—2016,食品安全国家标准食品中氨基酸的测定[S].北京:中国标准出版社,2017. [13] 中华人民共和国国家市场监督管理总局,中国国家标准化管理委员会.GB/T 18246—2019,饲料中氨基酸的测定[S].北京:中国标准出版社,2019. [14] 王红梅. 营养与食品卫生学[M]. 上海:上海交通大学出版社,2000:8-10. [15] 彭智华,龚敏方.蛋白质的营养评价及其在食用菌营养评价上的应用[J].食用菌学报,1996,3(3):56-64. [16] 赵玲,马红伟,曹荣,等.10种海参营养成分分析[J].食品安全质量检测学报,2016,7(7):2867-2872. [17] 封功能,韩光明,王爱民,等.4种常规养殖虾肌肉营养品质分析与评价[J].湖北农业科学,2011,50(5):1004-1007. [18] 孙晓琦,武天琦,李璐.锌、铁、铜、锰微量元素与老年人常见疾病的关系[J].现代食品,2018(18):43-45. [19] 王颖,吴志宏,李红艳,等.不同地理群体魁蚶的营养成分比较研究[J].食品科学,2013,34(3):248-252. [20] 曹善茂,王昊,陈炜,等.岩扇贝闭壳肌营养成分的分析及与中国3种扇贝的比较[J].大连海洋大学学报,2016,31(5):544-550. [21] 柳琪,滕葳,张炳春.中华鳖氨基酸和微量元素的分析与研究[J].氨基酸和生物资源,1995,17(1):18-21. [22] 张晓图,杜晨红,丁小娟,等.多不饱和脂肪酸的生物学功能及其在动物生产中的应用[J].动物营养学报,2017,29(9):3059-3067. [23] 童晓霞,周京国.脂肪酸在风湿性疾病中的作用[J].医学综述,2018,24(1):12-16. [24] 乔芳,李欢,李东亮,等.冬夏两季五种经济鱼类组织脂肪酸含量及组成分析[J].水产学报,2018,42(1):80-90. [25] RUZICKOVA J, ROSSMEISL M, PRAZAK T, et al. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue[J].Lipids,2004,39(12):1177-1185. [26] DYALL S C. Long-chain omega-3 fatty acids and the brain:a review of the independent and shared effects of EPA, DPA and DHA[J].Frontiers in Aging Neuroscience,2015,7:52. [27] 张洪涛,单雷,毕玉平.n-6和n-3多不饱和脂肪酸在人和动物体内的功能关系[J].山东农业科学,2006,38(2):115-120. [28] 丁海燕,孙晓杰,盛晓风,等.几种主要养殖淡水、海水经济鱼类肌肉营养组成及对比分析[J]. 食品科技,2016,41(3):150-155. [29] COLLINGRIDGE G. The role of NMDA receptors in learning and memory[J].Nature,1987,330(6149):604-605. [30] FIELD C J, JOHNSON I, PRATT V C. Glutamine and arginine: immunonutrients for improved health[J]. Medicine and Science in Sports and Exercise,2000,32(7 Suppl.):377-388. [31] 刘先进,陈胜军,李来好,等.四种鲍鱼肌肉营养成分分析与品质评价[J].食品与发酵工业,2018,44(5):227-231. [32] 颜孙安,姚清华,林香信,等.不同养殖模式大黄鱼肌肉营养成分比较[J].福建农业学报,2015,30(8):736-744. [33] TAKASHI KANO M D, NAGAKI M, TAKAHASHI T, et al. Plasma free amino acid pattern in chronic hepatitis as a sensitive and prognostic index[J]. Gastroenterologia Japonica,1991,26(3):344-349. [34] 施永海,张根玉,张海明,等.河川沙塘鳢肌肉营养成分的分析和评价[J].食品科学,2015,36(4):147-151. [35] 史文军,蒋葛,沈辉,等.脊尾白虾“科苏红1号”肌肉营养成分分析[J].食品工业,2019,40(7):304-308. [36] 刘丹.传统发酵鲍鱼内脏低盐鱼酱油的研究[D].福州:福建农林大学,2012. [37] 高娟,楼乔明,杨文鸽,等.超声辅助提取鱿鱼肝脏油脂及其脂肪酸组成分析[J].中国粮油学报,2014,29(2):53-56,61. [38] 邢荣娥,李克成,冯金华,等.栉孔扇贝内脏、裙边油中脂肪酸组成分析[J].中国油脂,2011,36(11):77-80. [39] 马丽艳,汪一红,刘志东,等.扇贝加工副产物资源利用进展[J].渔业信息与战略,2017,32(3):204-210. [40] LI H T, MAI K S, AI Q H, et al. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of large yellow croaker, Pseudosciaena crocea R[J].Frontiers of Agriculture in China,2009,3(1):78-83. [41] 李朝宗,司伟兰,段杉.以鱿鱼内脏酿造鱿酱油的制曲工艺研究[J].中国调味品,2011,36(12):83-86. [42] 于笛,傅志宇,郑杰,等. 秘鲁鱿鱼不同组织营养成分分析与评价[J].食品研究与开发,2021,42(5):164-171.