Optimization of Culture Conditions for Amplification of Female Gametophytes in Saccharina sculpera
LI Yan1,2, CHEN Shuxiu1,3, TIAN Pingping1,3, WU Ruina1,3, SAI Shan1,2, LI Xiaojie1,2
1. Shandong Oriental Ocean Group Co., Ltd., Yantai 264003, China; 2. National Algae and Sea Cucumber Engineering Technology Research Center, Yantai 264000, China; 3. Shandong Key Laboratory of Seawater Seed Industry(Constructed), Yantai 264000, China
Abstract:In order to inhibit the parthenogenesis of female gametophytes in Saccharina sculpera under conventional culture conditions of 10 ℃, light intensity of 3000—4000 lx, available nitrogen and phosphorus concentrations of 10 mg/L and 1 mg/L, the female gametophytes of the seaweed filtered through a 60 μm sieve were evenly poured into a Petri dish with a diameter of 9 cm at temperatures of 5, 8, 12, 15 and 20 ℃, the light intensity of 500. 1000, 2000, 3000 and 4000 lx, NaNO3-N concentration from 0.1 to 10.0 mg/L and KH2PO4-P concentration from 0.01 to 1.00 mg/L, aiming to improve the growth rate of female gametophytes and thus to inhibit parthenogenesis by adjusting the environmental conditions. The results showed that there were significant effects of light intensity, temperature, nitrogen and phosphorus concentrations and nitrogen source on the growth of female gametophytes in S. sculpera the seaweed. The parthenogenesis was found to be inhibited at 15 ℃, with significantly higher relative growth rate than that in other groups. The relative growth rate of female gametophytes was decreased, and the number of sporophytes produced by parthenogenesis increased significantly with the increase in light intensity. The maximal relative growth rate of female gametophytes was observed at 1000 lx, with significantly less sporophytes per unit area (1 cm2) than that in high light intensity groups (2000—4000 lx). The maximal relative growth rate (9.25%) and no parthenogenesis were found in the female gametophyte exposed to concentration of 1 mg/L in N and 0.1 mg/L in P. More and more branches in the clusters of female gametophyte cells were observed in NaNO3 and CH4N2O groups, with fewer branches of cells clustered into clusters and significantly higher relative growth rates in the other three groups. Therefore, S.sculpera grows fastest and is not prone to parthenogenesis under the conditions of white light, 1000 lx, 24 h/d, 15 ℃, 1.0 mg/L in N and 0.10 mg/L in P, and NaNO3 and CH4N2O as nitrogen source.
[1] SUN J, WANG L, WU S X, et al. Transcriptome-wide evolutionary analysis on essential brown algae (Phaeophyceae) in China[J]. Acta Oceanologica Sinica,2014,33(2):13-19. [2] QU Y Y, CAO Z M, WANG W W, et al. Monthly variations of fucoidan content and its composition in the farmed brown alga Saccharina sculpera (Laminariales, Phaeophyceae)[J]. Journal of Applied Phycology,2019,31(4):2623-2628. [3] REN D D, WANG Q K, YANG Y, et al. Hypolipidemic effects of fucoidan fractions from Saccharina sculpera (Laminariales, Phaeophyceae)[J]. International Journal of Biological Macromolecules,2019,140:188-195. [4] 宋泽.大连厚叶海带褐藻聚糖硫酸酯的分离纯化及其抗炎作用研究[D].大连:大连海洋大学,2019. [5] TANI T, KAWAGOE C, MATSUMOTO S, et al. Seasonal variations and morphological changes of sporophytes of Saccharina sculpera (Laminariales, Phaeophyceae) from Hakodate, Hokkaido[J]. Aquaculture Science,2015,63(3):235-244. [6] YOO H I, KIM S H, LEE S Y, et al. Optimal Conditions for Aquaculture of Endangered Kelp, Saccharina sculpera [C]//Conference on the Future Technology of Fisheries Science. Korea: The Korean Society of Fisheries and Aquatic Science, 2021. [7] ZHANG Q S, QU S C, CONG Y Z, et al. High throughput culture and gametogenesis induction of Laminaria japonica gametophyte clones[J]. Journal of Applied Phycology,2008,20(2):205-211. [8] 区丽华,卢家磊,吴圣哲,等.低温对大型海藻型微生物脱盐电池处理海产品暂养水的影响[J].上海海洋大学学报,2022,31(5):1146-1157. [9] 向玉哲.半叶马尾藻中国变种四个地理群体分布特征调查及其对高温和低温环境胁迫的响应[D].汕头:汕头大学,2022. [10] 宣慧,佟少明,侯和胜.高温胁迫对海带配子体生长和生理的影响[J].天津农业科学,2011,17(2):5-8. [11] 陈书秀,李霞,赵楠,等.温度对笼目海带配子体生长发育的影响[J].水产科学,2021,40(6):895-899. [12] 尚书.海带配子体克隆的扩增培养及多样性分析[D].青岛:中国海洋大学,2008. [13] 李晓捷,王国文,张全胜,等.温度对“901” 海带配子体克隆生长的影响[J].水产科技情报,2004,31(4):166-168. [14] 王梅林.海带几个不同种的雌性克隆对高温的适应力[J].山东海洋学院学报,1987,17(2):72-76. [15] 王军,张泽宇,张晓东.温度与照度对利尻海带配子体及幼孢子体的影响[J].中国水产,1999(2):39-41. [16] 孙娟,潘金华,张壮志,等.温度和光照强度对多肋藻(Costaria costata)配子体生长影响研究[J].渔业研究,2019,41(1):11-17. [17] 牛建峰,冯泽中,孙振杰,等.不同强度光强胁迫对海带(Saccharina japonica)幼苗光合生理的影响[J].海洋与湖沼,2023,54(1):160-172. [18] 黄健,唐学玺,段德麟,等.不同光照条件下海带体内各种化合物的含量及光合作用和呼吸作用的变化[J].海洋科学,2002,26(4):55-58. [19] 梁洲瑞,刘福利,杜欣欣,等.光强对极北海带幼苗生长和生化特性的影响[J].渔业科学进展,2019,40(4):115-122. [20] SATO Y, KOZONO J, NISHIHARA G N, et al. Effect of light and temperature on photosynthesis of a cultivated brown alga, Saccharina sculpera (Laminariales), from Japan[J]. Phycologia,,2020,59(4):375-384. [21] 欧毓麟,崔竞进,方宗熙.海带雌配子体对连续光照的反应[J].山东海洋学院学报,1979,9(1):128-131. [22] 杜欣欣,刘福利,袁艳敏,等.极北海带幼苗对氮、磷和铁营养元素需求的研究[J].水产科学,2021,40(1):81-88. [23] ZOU D H, LIU S X, DU H, et al. Growth and photosynthesis in seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeophyta) cultured at two different temperatures[J]. Journal of Applied Phycology,2012,24(5):1321-1327. [24] BLOKHINA O, VIROLAINEN E, FAGERSTEDT K V. Antioxidants, oxidative damage and oxygen deprivation stress:a review[J]. Annals of Botany,2003,91(2):179-194. [25] XINYI E, CROFCHECK C, CROCKER M. Application of recycled media and algae-based anaerobic digestate in Scenedesmus cultivation [J]. Journal of Renewable and Sustainable Energy, 2016,8(1):013116. [26] 徐智广,吴海一,孙福新,等.不同氮源加富对海带生长、光合固碳和氮吸收特性的影响[J].水产学报,2016,40(4):577-584. [27] 刘静雯,董双林.海藻的营养代谢及其对主要营养盐的吸收动力学[J].植物生理学通讯,2001,37(4):325-330. [28] MIZUTA H, MAITA Y. Effects of nitrate supply on ammonium assimilations in the blade of Laminaria japonica (Phaeophyceae) [J]. Hokkaido University, Bulletin of Fisheries Sciences,1991,42:107-114. [29] XU D, GAO Z Q, ZHANG X W, et al. Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication[J]. Bioresource Technology,2011,102(21):9912-9918. [30] AHN O, PETRELL R J, HARRISON P J. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm[J]. Journal of Applied Phycology,1998,10(4):333-340. [31] LIU F, PANG S J, GAO S Q. Growth performance of unialgal gametophytes of the brown alga Saccharina japonica in mass culture conditions[J]. Journal of Applied Phycology,2016,28(2):1145-1152. [32] 赵鑫.大型海藻光合活性实验研究[D].上海:上海海洋大学,2023. [33] 丁柳丽,邹定辉,刘露,等.气候变化对海藻龙须菜生长与光合作用耐热特性的影响[J].生态学报,2015,35(10):3267-3277. [34] WU H Y, JIANG H, LIU C X, et al. Growth, pigment composition, chlorophyll fluorescence and antioxidant defenses in the red alga Gracilaria lemaneiformis (Gracilariales, Rhodophyta) under light stress[J]. South African Journal of Botany,2015,100:27-32. [35] 李丽霞,董开升,唐学玺.2种潮间带大型海藻种间竞争作用对UV-B辐射增强的响应[J].环境科学,2008,29(10):2766-2772. [36] 江莹莹.重金属镉、氮营养与海洋酸化对大型海藻石莼的耦合效应研究[D].广州:广州大学,2020. [37] 戴继勋,方宗熙.海带孤雌生殖的初步观察[J].遗传学报,1976,3(1):32-38. [38] 戴继勋,崔竞进,欧毓麟,等.海带孤雌生殖和染色体自然加倍的研究[J].海洋学报,1992,14(1):105-107. [39] LUTHRINGER R, CORMIER A, AHMED S, et al. Sexual dimorphism in the brown algae[J]. Perspectives in Phycology,2014,1(1):11-25. [40] YUE S T, XUE N C, YI C L, et al. Apomixis in Saccharina japonica:parthenogenesis in male and apogamy in female gametophytes[J]. Aquaculture,2024,591:741142. [41] 白逢伟,秦松,李永祺.海带丝状雌配子体孤雌生殖的初步研究[J].海洋科学,1998,22(6):32-35. [42] 赛珊.环境条件对海带雌配子体孤雌生殖的影响[D].烟台:烟台大学,2018.