Effects of Allicin on Growth and Disease Resistance in Turbot
LI Huitao1,2, HUANG Bin1, LIU Baoliang1, LIU Bin1, WANG Weifang1
1. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 2. Shandong Baifu Biotech Co, Ltd, Jining 273200, China
Abstract:Juvenile turbot (Scophthalmus maximus) with body weight of (8.12±0.03) g was reared in cement ponds of each 5.0 m × 5.0 m × 0.6 m at stocking density of 3600 individuals per pond and fed diets containing 0 (control), 100, 200, 400, and 800 mg/kg diet allicin at water temperature of 13—15 ℃ and a salinity of 30 for 6 weeks. At the end of the feeding trial, pathogen Vibrio anguillarum was injected intraperitoneally into the turbot for 14 days to infect; after 24 hours of starvation, the sample fish was weighed and blood was collected from caudal peduncle vein to determine the content of complement C3, and the activities of lysozyme and superoxide dismutase (SOD) in serum to explore the effects of allicin on the growth, non-specific immunity and disease resistance of turbot. It was found that the specific growth rate was increased with the increasing level of dietary allicin, significantly higher in the juveniles fed diets containing allicin up to 200 mg/kg and over than that in the juveniles in control group (P<0.05). The fish fed control diet had significantly lower survival rate than the fish in other groups did (P<0.05). The food conversion ratio was shown to be decreased with the increase in dietary allicin, significantly lower than that in the 100 mg/kg group, and stable in the dietary allicin up to 200 mg/kg group. Serum complement C3 contents were increased with the increasing level of dietary allicin from 0 to 400 mg/kg, with the maximal C3 contents in 200 and 400 mg/kg groups, significantly higher than any other groups (P<0.05). The lysozyme and SOD activities in serum were found to be increased with the increasing level of dietary allicin, without significant increase in dietary allicin up to 400 mg/kg group. The challenge test indicated that the infection mortalities in treatment of 400 and 800 mg allicin/kg diet were significantly lower than that in any other treatments (P<0.05). Therefore, it is recommended that 200 mg/kg diet be essential to maintain the optimal growth for the juvenile turbot, and 400 mg/kg diet leads to improve nonspecific immunity and ability to fight enteritis more effectively.
李会涛, 黄滨, 刘宝良, 刘滨, 王蔚芳. 大蒜素对大菱鲆幼鱼生长及抗病力的影响[J]. 水产科学, 2020, 39(4): 539-544.
LI Huitao, HUANG Bin, LIU Baoliang, LIU Bin, WANG Weifang. Effects of Allicin on Growth and Disease Resistance in Turbot. Fisheries Science, 2020, 39(4): 539-544.
[1]陈能煜,伍睿,陈丽,等. 大蒜研究进展[J]. 天然产物研究与开发,2000,12(2):67-74. [2]黄克松,孙伟,李军. 大蒜素在水产养殖的应用及前景分析[J].中国饲料添加剂,2016,171(7):9-11. [3]康淑媛,王荻,卢彤岩. 大蒜素对鲫非特异免疫指标影响的研究[J]. 大连海洋大学学报,2016,31(2):168-173. [4]罗庆华,贺建华,刘清波,等. 杜仲大蒜复方添加剂对草鱼免疫力的影响[J]. 安徽农业科学,2007,35(28):8910-8911,8932. [5]李婵,白岚,徐奇友,等. 不同促生长剂对虹鳟生长性能及非特异性免疫机能的影响[J]. 大连海洋大学学报,2008,23(3):179-184. [6]曹丹,周洪琪. 不同添加剂对暗纹东方鲀生长和脾脏溶菌酶活力的影响[J]. 水产科技,2002,99(3):17-19. [7]林建斌,朱庆国,梁萍,等. 不同添加剂对团头鲂生长性能和肌肉品质的影响[J]. 福建农业学报,2015,30(7):636-641. [8]刘永坚,郑伟宏,曹俊明,等. 饲料中添加大豆磷脂、大蒜素和乳酸菌对罗非鱼的生物效应[J]. 上海水产大学学报,1998,7(增刊):250-254. [9]徐奇友,唐玲,王常安,等. 大蒜茎粉和牛至草粉对镜鲤抗氧化、非特异免疫以及肌肉品质的影响[J]. 华北农学报,2010,25(A2):133-139. [10]Fall J, Tanekhy M. The effect of allicin on innate immune genes of common carp (Cyprinus carpio L) [J]. Journal of Applied Biotechnology,2016,4(1):1-12. [11]陈怀青,陆承平,雍杰,等. 用大蒜素防治草鱼肠炎的试验[J]. 中国兽药杂志,1993,27(4):35-37. [12]Militz T A, Southgate P C, Carton A G, et al. Dietary supplementation of garlic (Allium sativum) to prevent monogenean infection in aquaculture[J]. Aquaculture,2013,408/409:95-99. [13]Nya E J, Dawood Z, Austin B. The garlic component, allicin, prevents disease caused by Aeromonas hydrophila in rainbow trout, Oncorhynchus mykiss (Walbaum) [J]. Journal of Fish Diseases,2010,33(4):293-300. [14]Kim J H, Fridman S, Borochov-Neori H, et al. Evaluating the use of garlic (Allium sativum) for the remedy of Cryptocaryon irritans in guppies (Poecilia reticulata) [J]. Aquaculture Research,2019,50(2):431-438. [15]赵兰英,张劲松. 大蒜素防治大菱鲆肠炎病的探讨[J]. 中国水产,2009(7):59-60. [16]秦蕾,王印庚,阎斌伦. 大菱鲆微生物性疾病研究进展[J]. 水产科学,2008,27(11):598-602. [17]崔惠敬,孟玉霞,冯文倩,等. 养殖大菱鲆肠道中大菱鲆弧菌的分离鉴定及药敏试验[J].水产科学,2017,36(2):125-131. [18]秦蕾,孙玉英,毕可然,等. 迟缓爱德华氏菌对大菱鲆巨噬细胞相关生物效应分子产生的影响[J]. 水产科学,2018,37(2):239-243. [19]朱开玲,陈吉祥,李筠,等. 鳗弧菌灭活疫苗对海水养殖大菱鲆的免疫预防研究[J]. 高技术通讯,2004,(2):76-80. [20]李凌,吴灶和. 鱼类体液免疫研究进展[J]. 海洋科学,2001,25(11):20-22. [21]王志平,张士璀,王光锋. 鱼类补体系统成分及补体特异性和功能的研究进展[J]. 水生生物学报,2008,32(5):760-769. [22]Grinde B, Jollès J, Jollès P. Purification and characterization of two lysozymes from rainbow trout (Salmo gairdneri) [J]. European Journal of Biochemistry,1988,173(2):269-273. [23]Fernandez-Trujillo M A, Bejar J, Gallardo J B, et al. Molecular cloning and characterization of C-type lysozyme from Senegalese sole (Solea senegalensis) [J]. Aquaculture,2007,272(S1):S255. [24]宋文华,张涛,富丽静,等. 大蒜素、枸杞多糖对草鱼血清非特异性免疫指标的影响[J]. 河北渔业,2011(6):12-18,21. [25]Paulsen S M, Engstad R E, Robertsen B. Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast β-glucan and bacterial lipopolysaccharide[J]. Fish & Shellfish Immunology,2001,11(1):23-37. [26]Tanekhy M, Fall J. Expression of innate immunity genes in kuruma shrimp Marsupenaeus japonicus after in vivo stimulation with garlic extract (allicin) [J]. Veterinarni Medicina,2015,60(1):39-47. [27]Fall J,Tanekhy M. The effect of allicin on innate immune genes of common carp (Cyprinus carpio L) [J]. Journal of Applied Biotechnology,2016,4(1):1-12.