|
|
益生芽孢杆菌对鱼类生长与抗病力影响的研究进展 |
张宇柔1, 陈玉珂2, 于梦楠1, 雷新雨1, 王嘉婧2, 高永生2, 王秋举2, MAHMOUD M. Elsadek2, 张东鸣2,3 |
1.吉林农业大学 生命科学学院,吉林 长春 130118; 2.吉林农业大学 动物科学技术学院/动物医学院, 动物生产及产品质量安全教育部重点实验室,吉林省动物营养与饲料科学重点实验室,吉林 长春 130118; 3.通化师范学院,吉林 通化 134000 |
|
Research Progress on Effect of Probiotic Bacillus on Fish Growth and Disease Resistance |
ZHANG Yurou1, CHEN Yuke2, YU Mengnan1, LEI Xinyu1, WANG Jiajing2, GAO Yongsheng2, WANG Qiuju2, MAHMOUD M. Elsadek2, ZHANG Dongming2,3 |
1. College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; 2. Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, College of Animal Science and Technology/College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; 3. Tonghua Normal University, Tonghua 134000, China |
引用本文: |
张宇柔, 陈玉珂, 于梦楠, 雷新雨, 王嘉婧, 高永生, 王秋举, MAHMOUD M. Elsadek, 张东鸣. 益生芽孢杆菌对鱼类生长与抗病力影响的研究进展[J]. 水产科学, 2022, 41(2): 325-335.
ZHANG Yurou, CHEN Yuke, YU Mengnan, LEI Xinyu, WANG Jiajing, GAO Yongsheng, WANG Qiuju, MAHMOUD M. Elsadek, ZHANG Dongming. Research Progress on Effect of Probiotic Bacillus on Fish Growth and Disease Resistance. Fisheries Science, 2022, 41(2): 325-335.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.20203 或 http://www.shchkx.com/CN/Y2022/V41/I2/325 |
[1] PAULY D, ZELLER D. Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016)[J].Marine Policy,2017,77:176-181. [2] BONDAD-REANTASO M G, SUBASINGHE R P, ARTHUR J R, et al. Disease and health management in Asian aquaculture[J].Veterinary Parasitology,2005,132(3/4):249-272. [3] WATTS J, SCHREIER H, LANSKA L, et al. The rising tide of antimicrobial resistance in aquaculture:sources, sinks and solutions[J].Marine Drugs,2017,15(6):158. [4] LEE D H, LIM S R, HAN J J, et al. Effects of dietary garlic powder on growth, feed utilization and whole body composition changes in fingerling sterlet sturgeon, Acipenser ruthenus[J].Asian-Australasian Journal of Animal Sciences,2014,27(9):1303-1310. [5] CAPKIN E, ALTINOK I. Effects of dietary probiotic supplementations on prevention/treatment of yersiniosis disease[J].Journal of Applied Microbiology,2009,106(4):1147-1153. [6] CAPKIN E, OZCELEP T, KAYIS S, et al. Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout[J].Chemosphere,2017,182:720-729. [7] HONDA K, LITTMAN D R. The microbiome in infectious disease and inflammation[J].Annual Review of Immunology,2012,30:759-795. [8] ZHANG D X, KANG Y H, ZHAN S, et al. Effect of Bacillus velezensis on Aeromonas veronii-induced intestinal mucosal barrier function damage and inflammation in crucian carp (Carassius auratus)[J].Frontiers in Microbiology,2019,10:2663. [9] 李思思,周成翀,王欢,等.草鱼树突状细胞的分离鉴定及益生芽孢杆菌对其免疫功能的影响[J].水生生物学报,2020,44(2):245-251. [10] AMIN M, RAKHISI Z, ZAREI AHMADY A. Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties[J].Avicenna Journal of Clinical Microbiology and Infection,2015,2(1):23233. [11] YI Y L, ZHANG Z H, ZHAO F, et al. Probiotic potential of Bacillus velezensis JW:antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus[J].Fish & Shellfish Immunology,2018,78:322-330. [12] 王振华,李建臻,王迪,等.益生芽孢杆菌在水产养殖中研究现状及存在问题[J].饲料研究,2018(1):1-4. [13] STURR M G, GUFFANTI A A, KRULWICH T A. Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH[J].Journal of Bacteriology,1994,176(11):3111-3116. [14] ANNAMALAI N, RAJESWARI M V, ELAYARAJ A S, et al. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes[J].Carbohydrate Polymers,2013,94(1):409-415. [15] RAY A K. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut[J].Acta Ichthyologica et Piscatoria,2007,37(1):47-53. [16] GHOSH K, RAY A K, RINGØ E. Applications of plant ingredients for tropical and subtropical freshwater finfish:possibilities and challenges[J].Reviews in Aquaculture,2019,11(3):793-815. [17] MUKHERJEE A, GHOSH K. Antagonism against fish pathogens by cellular components and verification of probiotic properties in autochthonous bacteria isolated from the gut of an Indian major carp, Catla catla (Hamilton)[J].Aquaculture Research,2016,47(7):2243-2255. [18] BANERJEE G, DAN S K, NANDI A, et al. Autochthonous gut bacteria in two Indian air-breathing fish, climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus):mode of association, identification and enzyme producing ability[J].Polish Journal of Microbiology,2015,64(4):361-368. [19] BANERJEE S, MUKHERJEE A, DUTTA D, et al. Evaluation of chitinolytic gut microbiota in some carps and optimization of culture conditions for chitinase production by the selected bacteria[J].Journal of Microbiology, Biotechnology and Food Sciences,2015,5(1):12-19. [20] GHOSH K, BANERJEE S, MOON U M, et al. Evaluation of gut associated extracellular enzyme-producing and pathogen inhibitory microbial community as potential probiotics in Nile tilapia, Oreochromis niloticus[J].International Journal of Aquaculture,2017,7(23):143-158. [21] ASKARIAN F, ZHOU Z G, OLSEN R E, et al. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin.Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens[J].Aquaculture,2012,326/327/328/329:1-8. [22] RAY A K, GHOSH K, RINGØ E. Enzyme-producing bacteria isolated from fish gut:a review[J].Aquaculture Nutrition,2012,18(5):465-492. [23] MUKHERJEE A, DUTTA D, BANERJEE S, et al. Culturable autochthonous gut bacteria in rohu, Labeo rohita.In vitro growth inhibition against pathogenic Aeromonas spp., stability in gut, bio-safety and identification by 16S rRNA gene sequencing[J].Symbiosis,2017,73(3):165-177. [24] SELIM K M, REDA R M. Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens[J].Fish & Shellfish Immunology,2015,44(2):496-503. [25] LALLOO R, MOONSAMY G, RAMCHURAN S, et al. Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent[J].Letters in Applied Microbiology,2010,50(6):563-570. [26] YANG G Q, CHEN M, YU Z, et al. Bacillus composti sp.nov.and Bacillus thermophilus sp.nov., two thermophilic, Fe(Ⅲ)-reducing bacteria isolated from compost[J].International Journal of Systematic and Evolutionary Microbiology,2013,63(Pt 8):3030-3036. [27] 何若天.益生芽孢杆菌在水产养殖中的作用和使用方法[J].科学种养,2011(6):4-5. [28] RINGØ E, HOSEINIFAR S H, GHOSH K, et al. Lactic acid bacteria in finfish—an update[J].Frontiers in Microbiology,2018,9:1818. [29] XIONG J B, ZHU J Y, DAI W F, et al. Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease[J].Environmental Microbiology,2017,19(4):1490-1501. [30] CLEMENTE J C, URSELL L K, PARFREY L W, et al. The impact of the gut microbiota on human health:an integrative view[J].Cell,2012,148(6):1258-1270. [31] RAWLS J F, MAHOWALD M A, LEY R E, et al. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection[J].Cell,2006,127(2):423-433. [32] GÓMEZ G D, BALCÁZAR J L. A review on the interactions between gut microbiota and innate immunity of fish[J].FEMS Immunology & Medical Microbiology,2008,52(2):145-154. [33] WANG A R, RAN C, RINGØ E, et al. Progress in fish gastrointestinal microbiota research[J].Reviews in Aquaculture,2018,10(3):626-640. [34] LI X M, RINGØ E, HOSEINIFAR S H, et al. The adherence and colonization of microorganisms in fish gastrointestinal tract[J].Reviews in Aquaculture,2019,11(3):603-618. [35] MAZMANIAN S K, ROUND J L, KASPER D L. A microbial symbiosis factor prevents intestinal inflammatory disease[J].Nature,2008,453(7195):620-625. [36] SOKOL H, PIGNEUR B, WATTERLOT L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(43):16731-16736. [37] RINGØ E, ZHOU Z, VECINO J L G, et al. Effect of dietary components on the gut microbiota of aquatic animals.A never-ending story?[J].Aquaculture Nutrition,2016,22(2):219-282. [38] SOLTANI M, GHOSH K, HOSEINIFAR S H, et al. Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish[J].Reviews in Fisheries Science & Aquaculture,2019,27(3):331-379. [39] 王利宾,孙利娜.枯草芽孢杆菌作用机制及其在养殖业中的应用研究进展[J].饲料博览,2015(1):35-38. [40] VERSCHUERE L, ROMBAUT G, SORGELOOS P, et al. Probiotic bacteria as biological control agents in aquaculture[J].Microbiology and Molecular Biology Reviews,2000,64(4):655-671. [41] BALCÁZAR J L, DE BLAS I, RUIZ-ZARZUELA I, et al. The role of probiotics in aquaculture[J].Veterinary Microbiology,2006,114(3/4):173-186. [42] 刘翠玲.饲料中添加微生态制剂、抗菌肽及其复合制剂对鲤鱼生长、消化和非特异性免疫相关酶活性的影响[D].上海:上海海洋大学,2015:7. [43] REDA R M, SELIM K M. Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus[J].Aquaculture International,2015,23(1):203-217. [44] KUEBUTORNYE F K A, ABARIKE E D, LU Y S. A review on the application of Bacillus as probiotics in aquaculture[J].Fish & Shellfish Immunology,2019,87:820-828. [45] IRIANTO A, AUSTIN B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum)[J].Journal of Fish Diseases,2002,25(6):333-342. [46] ADEOYE A A, YOMLA R, JARAMILLO-TORRES A, et al. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome[J].Aquaculture,2016,463:61-70. [47] KUEBUTORNYE F K A, WANG Z W, LU Y S, et al. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection[J].Fish & Shellfish Immunology,2020,97:83-95. [48] QIN L, XIANG J H, XIONG F, et al. Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp (Ctenopharyngodon idella)[J].Fish & Shellfish Immunology,2020,97:344-350. [49] LEE S, KATYA K, PARK Y, et al. Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica[J].Fish & Shellfish Immunology,2017,61:201-210. [50] CEREZUELA R, FUMANAL M, TAPIA-PANIAGUA S T, et al. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens[J].Fish & Shellfish Immunology,2013,34(5):1063-1070. [51] ZHAO D, WU S G, FENG W W, et al. Adhesion and colonization properties of potentially probiotic Bacillus paralicheniformis strain FA6 isolated from grass carp intestine[J].Fisheries Science,2020,86(1):153-161. [52] FAN Y, LIU L T, ZHAO L H, et al. Influence of Bacillus subtilis ANSB060 on growth, digestive enzyme and aflatoxin residue in Yellow River carp fed diets contaminated with aflatoxin B1[J].Food and Chemical Toxicology,2018,113:108-114. [53] WU Z X, FENG X, XIE L L, et al. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora[J].Journal of Applied Ichthyology,2012,28(5):721-727. [54] LIU H T, WANG S F, CAI Y, et al. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus[J].Fish & Shellfish Immunology,2017,60:326-333. [55] DI J, CHU Z P, ZHANG S H, et al. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus[J].Fish & Shellfish Immunology,2019,93:711-719. [56] MOHAPATRA S, CHAKRABORTY T, PRUSTY A K, et al. Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings:effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora[J].Aquaculture Nutrition,2012,18(1):1-11. [57] ZAINELDIN A I, HEGAZI S, KOSHIO S, et al. Bacillus subtilis as probiotic candidate for red sea bream: growth performance, oxidative status, and immune response traits[J].Fish & Shellfish Immunology,2018,79:303-312. [58] AFRILASARI W, WIDANARN I, MERYANDINI A. Effect of probiotic Bacillus megaterium PTB 1.4 on the population of intestinal microflora, digestive enzyme activity and the growth of catfish (Clarias sp.)[J].HAYATI Journal of Biosciences,2016,23(4):168-172. [59] SANKAR H, PHILIP B, PHILIP R, et al. Effect of probiotics on digestive enzyme activities and growth of cichlids, Etroplus suratensis (Pearl spot) and Oreochromis mossambicus (Tilapia)[J].Aquaculture Nutrition,2017,23(4):852-864. [60] PUTRA A N, ROMDHONAH Y. Effects of dietary Bacillus NP5 and sweet potato extract on growth and digestive enzyme activity of dumbo catfish Clarias sp.[J].Jurnal Akuakultur Indonesia,2019,18(1):80-88. [61] CHA J H, RAHIMNEJAD S, YANG S Y, et al. Evaluations of Bacillus spp.as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives[J].Aquaculture,2013,402/403:50-57. [62] SUN Y Z, YANG H L, HUANG K P, et al. Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinephelus coioides larvae[J].Aquaculture,2013,392/393/394/395:44-50. [63] ADORIAN T J, JAMALI H, FARSANI H G, et al. Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch)[J].Probiotics and Antimicrobial Proteins,2019,11(1):248-255. [64] FUCHS V I, SCHMIDT J, SLATER M J, et al. The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus)[J].Aquaculture,2015,437:243-251. [65] HAUVILLE M R, ZAMBONINO-INFANTE J L, GORDON BELL J, et al. Effects of a mix of Bacillus sp. as a potential probiotic for Florida pompano, common snook and red drum larvae performances and digestive enzyme activities[J].Aquaculture Nutrition,2016,22(1):51-60. [66] HAMZA A, FDHILA K, ZOUITEN D, et al. Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities[J].Fish Physiology and Biochemistry,2016,42(2):495-507. [67] 赵云龙,叶梅燕,王嘉婧,等.发酵饲料对洛氏鱼岁生长、免疫、抗氧化能力以及肠道菌群影响[J].中国畜牧杂志,2020,56(8):172-176. [68] ELSABAGH M, MOHAMED R, MOUSTAFA E M, et al. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus[J].Aquaculture Nutrition,2018,24(6):1613-1622. [69] GAO X L, KE C H, WU F C, et al. Effects of Bacillus lincheniformis feeding frequency on the growth, digestion and immunity of Haliotis discus Hannai[J].Fish & Shellfish Immunology,2020,96:1-12. [70] INTERAMINENSE J A, VOGELEY J L, GOUVEIA C K, et al. Effects of dietary Bacillus subtilis and Shewanella algae in expression profile of immune-related genes from hemolymph of Litopenaeus vannamei challenged with Vibrio parahaemolyticus[J].Fish & Shellfish Immunology,2019,86:253-259. [71] MAKLED S O, HAMDAN A M, EL-SAYED A F M. Effects of dietary supplementation of a marine thermotolerant bacterium, Bacillus paralicheniformis SO-1, on growth performance and immune responses of Nile tilapia, Oreochromis niloticus[J].Aquaculture Nutrition,2019,25(4):817-827. [72] HASAN M T, JANG W J, LEE B J, et al. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus)[J].Fish & Shellfish Immunology,2019,88:424-431. [73] VAN DOAN H, HOSEINIFAR S H, KHANONGNUCH C, et al. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus)[J].Aquaculture,2018,491:94-100. [74] LI J, WU Z B, ZHANG Z, et al. Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus ♂ × E.fuscoguttatus♀)[J].Fish & Shellfish Immunology,2019,93:1047-1055. [75] 孔维光,吴志新,李思思,等.益生芽孢杆菌对草鱼肠上皮细胞的黏附及对嗜水气单胞菌的抑制[J].华中农业大学学报,2017,36(5):67-73. [76] 黄灿,张忠海,吴淑勤,等.益生芽孢杆菌对草鱼肠黏膜结构的保护作用[J].水生生物学报,2017,41(4):774-780. [77] HINDU S V, THANIGAIVEL S, VIJAYAKUMAR S, et al. Effect of microencapsulated probiotic Bacillus vireti 01-polysaccharide extract of Gracilaria folifera with alginate-chitosan on immunity, antioxidant activity and disease resistance of Macrobrachium rosenbergii against Aeromonas hydrophila infection[J].Fish & Shellfish Immunology,2018,73:112-120. [78] BAHI A, GUARDIOLA F A, MESSINA C, et al. Effects of dietary administration of fenugreek seeds, alone or in combination with probiotics, on growth performance parameters, humoral immune response and gene expression of gilthead seabream (Sparus aurata L.)[J].Fish & Shellfish Immunology,2017,60:50-58. [79] SRISAPOOME P, AREECHON N. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus):laboratory and on-farm trials[J].Fish & Shellfish Immunology,2017,67:199-210. [80] ADDO S, CARRIAS A A, WILLIAMS M A, et al. Effects of Bacillus subtilis strains and the prebiotic Previda® on growth, immune parameters and susceptibility to Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus[J].Aquaculture Research,2017,48(9):4798-4810. [81] ZHANG D F, GAO Y X, KE X L, et al. Bacillus velezensis LF01:in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus)[J].Applied Microbiology and Biotechnology,2019,103(21/22):9023-9035. [82] PANDIYAN P, BALARAMAN D, THIRUNAVUKKARASU R, et al. Probiotics in aquaculture[J].Drug Invention Today,2013,5(1):55-59. [83] 王颖,宋明,张锦华,等.微生态制剂对草鱼生产性能和肠道菌群的影响[J].水产科学,2020,39(1):12-21. [84] KAVITHA M, RAJA M, PERUMAL P. Evaluation of probiotic potential of Bacillus spp.isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822)[J].Aquaculture Reports,2018,11:59-69. [85] GOBI N, MALAIKOZHUNDAN B, SEKAR V, et al. GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus[J].Fish & Shellfish Immunology,2016,52:230-238. [86] WANG C, LIU Y, SUN G X, et al. Growth, immune response, antioxidant capability, and disease resistance of juvenile Atlantic salmon (Salmo salar L.) fed Bacillus velezensis V4 and Rhodotorula mucilaginosa compound[J].Aquaculture,2019,500:65-74. [87] DAS A, NAKHRO K, CHOWDHURY S, et al. Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla)[J].Fish & Shellfish Immunology,2013,35(5):1547-1553. [88] MEIDONG R, KHOTCHANALEKHA K, DOOLGINDACHBAPORN S, et al. Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti[J].Fish & Shellfish Immunology,2018,73:1-10. [89] MEIDONG R, DOOLGINDACHBAPORN S, JAMJAN W, et al. A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (Phak-Dong) for potential use as a feed supplement in aquaculture[J].The Journal of General and Applied Microbiology,2017,63(4):246-253. [90] LIN S M, MAO S H, GUAN Y, et al. Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi)[J].Aquaculture,2012,342/343:36-41. [91] 马小康,吴小嫚,胡乐琴.2种活菌饲料对金鲫幼鱼肠道及水体微生态的影响[J].水产科学,2018,37(3):316-323. [92] 毛磊磊,鄢庆枇,黄力行,等.luxR基因调控嗜水气单胞菌耐药性的分子机制初探[J].渔业科学进展,2019,40(4):147-155. [93] 叶勇,全建平,吴杰,等.家畜肠道微生物代谢组学研究进展[J].家畜生态学报,2020,41(3):1-8. |
[1] |
朱喜锋, 李诗洋, 胡俊茹, 梁浩辉, 黄燕华, 周萌, 王国霞. 大口黑鲈稚鱼赖氨酸需求量研究[J]. 水产科学, 2025, 44(2): 295-302. |
[2] |
陈星合, 贾心悦, 温志新, 李亚洁, 王冬, 都兴范. 柞蚕免疫蛹粉对中间球海胆生长和免疫的影响[J]. 水产科学, 2025, 44(2): 313-319. |
[3] |
董浩淼, 王方轶, 徐栋, 焦绪栋, 王维忠. 不同生长速率单环刺螠幼体肠道菌群差异分析[J]. 水产科学, 2025, 44(2): 303-312. |
[4] |
梁一帆, 吴建绍, 李慧耀, 杨求华, 郭松林, 李昭杰, 林琪. 美人鱼发光杆菌抑菌中草药的筛选及应用试验[J]. 水产科学, 2025, 44(2): 274-283. |
[5] |
薄其康, 白晓慧, 汪笑宇, 刘克明, 何晓旭, 裴玥, 张韦. 温度驯化对拉氏大吻鱥幼鱼生长和温度耐受性的影响[J]. 水产科学, 2025, 44(1): 83-90. |
[6] |
王小林, 刘修泽, 吉光, 王爱勇, 董婧, 王彬, 胥延钊, 张怡晶. 鸭绿江口脊尾白虾生长和繁殖特征及异质性分析[J]. 水产科学, 2025, 44(1): 129-135. |
[7] |
靳纪明, 路晶晶, 李小勇, 刘文珍, 王玉柱, 刘文舒, 方刘, 郭小泽. 鱼类对高温胁迫响应及机制研究进展[J]. 水产科学, 2025, 44(1): 151-161. |
[8] |
党莹超, 李莎, 苏巍, 胡凡旭, 姜伟. 基于环境DNA技术的宜宾江段秋季鱼类多样性研究[J]. 水产科学, 2024, 43(6): 894-905. |
[9] |
雷天娇, 张韵, 翟东东, 熊飞, 陈元元, 刘红艳. 基于系统发育和功能性状的向家坝库区鱼类群落构建机制[J]. 水产科学, 2024, 43(6): 944-954. |
[10] |
杨圆圆, 涂东宇, 于宏, 方珍珍, 石洪玥, 孙学亮, 陈成勋. 凹凸棒石对锦鲤生长、消化及其肠道菌群的影响[J]. 水产科学, 2024, 43(6): 955-964. |
[11] |
闫晶男, 吴怡蓉, 张雨婷, 江玲丽, 高有领. 藻粉对宽体金线蛭生长、酶活性和基因表达的影响[J]. 水产科学, 2024, 43(6): 974-983. |
[12] |
文露婷, 杜雪松, 李哲, 武霞, 黄姻, 覃俊奇, 黄博, 李旻, 邓潜, 林勇, 陈忠. 增喂无根萍对全州禾花鲤生长、营养及肠道菌群的影响[J]. 水产科学, 2024, 43(5): 694-706. |
[13] |
周寅鑫, 刘海波, 胡伟, 任效忠, 李猛. 鱼类趋流性在循环水养殖系统中的应用与展望[J]. 水产科学, 2024, 43(5): 822-832. |
[14] |
张琴, 王洪, 陈煜, 赵大显, 盛军庆, 张万昌. 荷包红鲤、彭泽鲫和萍乡红鲫肌间骨的比较分析[J]. 水产科学, 2024, 43(5): 767-774. |
[15] |
王天雨, 丛亚新, 吴朝霞, 孙文涛, 刘依朦. 氨氮对中华绒螯蟹蜕壳和抗氧化能力的影响[J]. 水产科学, 2024, 43(4): 590-597. |
|
|
|
|