Structural and Functional Characteristics of Intestinal Microbiota in Different Populations of Macrobrachium rosenbergii Larvae
SHI Jingu1,2, WU Xia1,3, HUANG Guanghua1, YANG Huizan1, LIANG Yi2, LYU Min1, ZENG Lan1, HU Dasheng2, HUANG Libin1, WANG Rui1
1. Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; 2. Fisheries Technology Extension Center of Guangxi, Nanning 530022, China; 3. College of Life Sciences, Guangxi Normal University, Guilin 541006, China
Abstract:Under the same culture conditions, five populations of Macrobrachium rosenbergii were cultured. The larvae of M. rosenbergii hatched for 20 days in the same batch were selected. The intestinal microflora of the larvae of Burmese population, Sri Lankan population, Vietnamese population, Bengali population and own variety 1 population were analyzed by 16S rRNA high-throughput sequencing technology. The results showed that there were 256 OTUs in common in five groups, and the unique OTUs of each group were 131, 247, 231, 144 and 184, respectively. The species richness of intestinal microbiota in Bengali population was the highest, and the species diversity of gut microbiota in Vietnamese population was the highest. The dominant microflora of five groups were similar in phylum and family level, which were Proteobacteria, Bacteroidetes and Firmicutes, but their abundance and composition of other microflora were different. The abundance of Firmicutes in intestinal microflora of Sri Lankan population was higher than that of Bacteroidetes, which was different from the other four groups. The five groups also have common functions, mainly focusing on carbohydrate metabolism, amino acid metabolism, vitamin metabolism and so on. The results showed that the intestinal microbiota of different populations of M. rosenbergii had some similarities in structure, abundance and metabolic function. This study analyzed the structure and functional characteristics of intestinal microbiota of different populations of M. rosenbergii larvae, which laid a foundation for further study on the growth and development mechanism of different populations of M. rosenbergii.
[1]陈文静,熊国根,邓勇辉,等.罗氏沼虾生物学研究[J].江西水产科技,2000(4):15-19. [2]赵臣泽.微生态制剂对罗氏沼虾生长、免疫及肠道健康的影响研究[D].扬州:扬州大学,2019. [3]杨树浩,冯艺,陈建酬,等.不同比例的生物饲料对罗氏沼虾生长、消化酶和免疫酶活性的影响[J].饲料工业,2018,39(2):18-25. [4]崔美岩,吕好新,张志霞,等.青海湖裸鲤肠道乳酸菌多样性与抑菌活性[J].微生物学通报,2016,43(9):2028-2039. [5]孙盛明,苏艳莉,张武肖,等.饲料中添加枯草芽孢杆菌对团头鲂幼鱼生长性能、肝脏抗氧化指标、肠道菌群结构和抗病力的影响[J].动物营养学报,2016,28(2):507-514. [6]李桂英,宋晓玲,孙艳,等.几株肠道益生菌对凡纳滨对虾非特异免疫力和抗病力的影响[J].中国水产科学,2011,18(6):1358-1367. [7]李桂英,孙艳,宋晓玲,等.饲料中添加潜在益生菌对凡纳滨对虾肠道消化酶活性和菌群组成的影响[J].渔业科学进展,2013,34(4):84-90. [8]唐杨,刘文亮,宋晓玲,等.饲料中补充蜡样芽孢杆菌对凡纳滨对虾生长及其肠道微生物组成的影响[J].水产学报,2017,41(5):766-774. [9]孔祎頔,田佳鑫,陈秀梅,等.水产动物益生菌及其对肠道菌群影响的研究进展[J].中国畜牧杂志,2019,55(1):29-33. [10]CHOW J, LEE S M, SHEN Y, et al. Host-bacterial symbiosis in health and disease[J].Advances in Immunology,2010,107:243-274. [11]JANDHYALA S M, TALUKDAR R, SUBRAMANYAM C, et al. Role of the normal gut microbiota[J].World Journal of Gastroenterology,2015,21(29):8787-8803. [12]YAMASHIRO K, TANAKA R, URABE T, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke[J].PLoS One,2017,12(2):e0171521. [13]GART E V, SUCHODOLSKI J S, WELSH T H Jr, et al. Salmonella typhimurium and multidirectional communication in the gut[J].Frontiers in Microbiology,2016,7:1827. [14]NAYAK S K. Role of gastrointestinal microbiota in fish[J].Aquaculture Research,2010,41(11):1553-1573. [15]周雪雁,刘翊中,陈轶霞,等.动物肠道菌群结构分析方法进展[J].微生物学杂志,2013,33(5):81-86. [16]韩娜,彭贤慧,张婷婷,等.一种新的定量16S rRNA基因扩增子测序方法[J].生物工程学报,2020,36(12):2548-2555. [17]周小娟,张日俊,郭宝林.不同品种、日龄和饲养方式对肉鸡肠道菌群的影响[J].中国微生态学杂志,2012,24(7):577-581. [18]司景磊,黄叶,陈奎蓉,等.基于16S rRNA测序揭示杜洛克猪早期体重与肠道微生物的关系[J].中国畜牧兽医,2021,48(1):190-199. [19]吴琼,王思珍,张适,等.基于16S rRNA高通量测序技术分析安格斯牛瘤胃微生物多样性和功能预测的研究[J].微生物学杂志,2020,40(2):49-56. [20]魏建敏,杨华连,陈莉,等.基于高通量测序分析果桑茶对2型糖尿病模型小鼠肠道菌群的影响[J].食品与发酵工业,2021,47(20):75-82. [21]汪婷婷,郑乃盛,袁向亮,等.基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J].诊断学理论与实践,2019,18(3):263-270. [22]李海超,谢飞,张园琦,等.不同抗、感水稻品种对褐飞虱肠道菌群的影响[J].生物技术通报,2021,37(3):1-9. [23]蔡斌斌.白甲鱼肠道微生物多样性及其功能分析[D].福州:福建师范大学,2017. [24]张振男,郁二蒙,谢骏,等.不同脆化阶段草鱼肠道菌群动态变化、血清酶指标及生长性能[J].农业生物技术学报,2015,23(2):151-160. [25]赵柳兰,龙亚男,罗杰,等.池塘和稻田两种养殖模式下建鲤肠道菌群、免疫酶活性及肌肉氨基酸比较分析[J].中国水产科学,2021,28(1):48-56. [26]邓祥宜,李池茜,张涵池,等.养殖塘和市售小龙虾肠道细菌多样性的比较[J].微生物学杂志,2021,41(3):44-52. [27]金若晨.凡纳滨对虾养殖池塘水质及养殖环境和虾肠道微生物群落结构研究[D].上海:上海海洋大学,2020. [28]夏雨,范荣波,易华西,等.植物乳杆菌对凡纳滨对虾致病菌抑制及其对肠道菌群结构的影响[J].中国海洋大学学报(自然科学版),2020,50(10):37-46. [29]ZHANG Y, LI Z Y, KHOLODKEVICH S, et al. Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii)[J].Chemosphere,2020,242:125105. [30]曾晨爔,林茂,李忠琴,等.基于16S rRNA基因扩增子测序分析日本囊对虾肠道菌群结构与功能的特征[J].微生物学通报,2020,47(6):1857-1866. [31]杨景丰.大豆抗原蛋白对罗氏沼虾免疫效应、摄食生理及肠道健康影响的研究[D].上海:上海海洋大学,2018. [32]董学兴,吕林兰,赵卫红,等.不同养殖模式下罗氏沼虾肠道菌群结构特征及其与环境因子的关系[J].上海海洋大学学报,2019,28(4):501-510. [33]杜珊,周月,陈斌.中医药与肠道微生态相关性研究进展[J].中国实验方剂学杂志,2019,25(18):182-188. [34]归崎峰,杨云梅,张发明.肠道微生态制剂老年人临床应用中国专家共识(2019)[J].中华危重症医学杂志(电子版),2019,12(2):73-79. [35]NIU Y F, DEFOIRDT T, REKECKI A, et al. A method for the specific detection of resident bacteria in brine shrimp larvae[J].Journal of Microbiological Methods,2012,89(1):33-37. [36]HUYS L, DHERT P, ROBLES R, et al. Search for beneficial bacterial strains for turbot (Scophthalmus maximus L.) larviculture[J].Aquaculture,2001,193(1/2):25-37. [37]胡金梅,郑晓澜,万琼.戊二醛保存的无菌持物钳在无菌水冲洗前、后细菌学检测[J].实用临床医学,2010,11(7):13-14. [38]王伟,张丽华,管德泳,等.流水冲洗对外植体消毒灭菌的影响[J].现代园艺,2014(14):20. [39]屈明静,贾玲嫈.电动牙刷含氟牙膏刷洗结合无菌水冲洗法对比传统口腔护理对牙菌斑去除率及口腔并发症影响研究[J].山西医药杂志,2017,46(18):2248-2249. [40]宋兆齐,王莉,刘秀花,等.云南4处酸性热泉中的变形菌门细菌多样性[J].河南农业大学学报,2016,50(3):376-382. [41]HULIN S J, SINGH S, CHAPMAN M A S, et al. Sulphide-induced energy deficiency in colonic cells is prevented by glucose but not by butyrate[J].Alimentary Pharmacology & Therapeutics,2002,16(2):325-331. [42]BEN-YOSEF M, AHARON Y, JURKEVITCH E, et al. Give us the tools and we will do the job:symbiotic bacteria affect olive fly fitness in a diet-dependent fashion[J].Proceedings.Biological Sciences,2010,277(1687):1545-1552. [43]姚明燕,季清娥,陈家骅.实蝇肠杆菌科共生菌的研究进展[J].生物安全学报,2017,26(2):103-110. [44]ZHANG M L, CHEKAN J R, DODD D, et al. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(35):E3708-E3717. [45]DODD D, MACKIE R I, CANN I K O. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes[J].Molecular Microbiology,2011,79(2):292-304. [46]刘荣瑜,王昊,张子依,等.多糖与肠道菌群相互作用的研究进展[J].食品科学,2022,43(5):363-373. [47]谷莉.不同鼠种的肠道菌群在不同饮食结构干预中的组成改变[D].长沙:中南大学,2014. [48]洪斌,牛犇,陈萍,等.凡纳滨对虾和罗氏沼虾肠道微生物及抗生素抗性基因多样性分析[J].水产学报,2019,43(5):1347-1358. [49]CANI P D, DELZENNE N M. The role of the gut microbiota in energy metabolism and metabolic disease[J].Current Pharmaceutical Design,2009,15(13):1546-1558. [50]DEN BESTEN G, VAN EUNEN K, GROEN A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J].Journal of Lipid Research,2013,54(9):2325-2340. [51]MACKOS A R, MALTZ R, BAILEY M T. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation[J].Hormones and Behavior,2017,88:70-78. [52]RAJILIĆ-STOJANOVIĆ M, SMIDT H, DE VOS W M. Diversity of the human gastrointestinal tract microbiota revisited[J].Environmental Microbiology,2007,9(9):2125-2136. [53]WANG H S, NI X Q, QING X D, et al. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers[J].Frontiers in Microbiology,2017,8(1):1073.