Uncertainty Comparison of Two Methods for Detection of Cadmium in Fishery Products
TAN Xiuhui1,2,3, YANG Hongsheng1,2,3, HUANG Hongbing1, LI Jiajia1, XIA Liping1,2,3, ZHANG Qiuyun1,2,3, LIU Chang1,2,3, ZHU Xiaohua1,2,3
1. Freshwater Fishery Research Institute of Jiangsu Province, Nanjing 210017, China; 2. Aquatic Products Analysis and Testing Center of Jiangsu Province, Nanjing 210017, China; 3. Fishery Products Quality Supervision and Testing Center, Ministry of Agriculture and Rural Affairs, Nanjing 210017, China
Abstract:The content of cadmium in FAPAS QC Material T07279QC was comparatively determined by both graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma-mass spectrometry (ICP-MS), a mathematical model of uncertainty evaluation for detection of cadmium in fishery products was established, and each component of uncertainty of the two analytical methods was quantified to evaluate uncertainty of the two methods for the determination of cadmium in fishery products and to explore the sources of measurement uncertainty. The major uncertaintyof GFAAS method was found to be derived from variability of calibration curve, compared to standard solution preparation for ICP-MS method, with the higher expanded uncertainty in GFAAS method than that in ICP-MS method. The content of cadmium in the FAPAS QC Material T07279QC was calculated as (7.47±0.470) mg/kg by the GFAAS method and (7.53±0.376) mg/kg (k=2) by ICP-MS method. The determination values by two methods were both in consistency with the certified value (5.76—9.33 mg/kg).
谭秀慧,杨洪生,黄鸿兵,李佳佳,夏莉萍,张秋云,刘畅,朱晓华. 水产品中镉两种测定方法的不确定度评定比较[J]. 水产科学, 2021, 40(2): 218-225.
TAN Xiuhui, YANG Hongsheng, HUANG Hongbing, LI Jiajia, XIA Liping, ZHANG Qiuyun, LIU Chang, ZHU Xiaohua. Uncertainty Comparison of Two Methods for Detection of Cadmium in Fishery Products. Fisheries Science, 2021, 40(2): 218-225.
[1]Wang S C, Chu Z X, Zhang K G, et al. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans[J]. Chemosphere,2018,213:11-18. [2]Hassan A H A, Zeinhom M M A, Abdel-Wahab M A, et al. Heavy metal dietary intake and potential health risks for university hostel students[J]. Biological Trace Element Research,2016,170(1):65-74. [3]Giri S, Singh A K. Human health risk and ecological risk assessment of metals in fishes, shrimps and sediment from a tropical river[J]. International Journal of Environmental Science and Technology,2015,12(7):2349-2362. [4]Lei W W, Wang L, Liu D M, et al. Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense[J]. Chemosphere,2011,84(5):689-694. [5]李状状,李霞,王缙云,等.重金属对鱼类细胞系遗传损伤和基因表达的影响[J].水产科学,2018,37(2):278-282. [6]Huo J F, Dong A G, Yan J J, et al. Cadmium toxicokinetics in the freshwater turtle, Chinemys reevesii[J]. Chemosphere,2017,182:392-398. [7]Zhang Y, Li Z Y, Kholodkevich S, et al. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii)[J]. The Science of the Total Environment,2019,666:944-955. [8]Koedrith P, Kim H L, Weon J I, et al. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity[J]. International Journal of Hygiene and Environmental Health,2013,216(5):587-598. [9]Ahmed M K, Baki M A, Islam M S, et al. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh[J]. Environmental Science and Pollution Research,2015,22(20):15880-15890. [10]彭雪,黄晓亮,陈思涵,等.镉、汞单独及联合胁迫对中华绒螯蟹的急性毒性[J].水产科学,2015,34(4):220-226. [11]吕冰峰,刘敏,邢书霞.2018年水产品国家食品安全监督抽检结果分析[J].食品安全质量检测学报,2019,10(17):5699-5705. [12]蔡华,罗宝章,熊丽蓓,等.上海市水产品中重金属污染情况[J].卫生研究,2018,47(5):740-743. [13]丁洪流,代菲,张素芳,等.苏州市售动物性水产品兽药残留和重金属含量调研分析[J].食品安全质量检测学报,2019,10(8):2174-2180. [14]梁辉,周少君,戴光伟,等.2010—2014年广东省水产品中铅镉含量调查及评价[J].中国食品卫生杂志,2017,29(2):209-212. [15]江晨洁,吴光红,张美琴,等.全国6省市甲壳类水产品中铅和镉污染情况调查与分析[J].食品安全质量检测学报,2015,6(8):3237-3246. [16]董欣悦,宋超,张聪,等.中国养殖中华绒螯蟹中镉的残留现状及膳食风险评估[J].生态环境学报,2019,28(3):564-570. [17]刘淑晨,刘丽,夏海青.石墨炉原子吸收分光光度法测定海蟹中镉的不确定度[J].中国食品卫生杂志,2015,27(S1):4-6. [18]赵一霖,李姗,何霜,等.电感耦合等离子体质谱法测定水产品中16种元素的不确定度评定[J].食品安全质量检测学报,2016,7(10):4156-4162. [19]中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. GB 5009.15—2014,食品中镉的测定[S].北京:中国标准出版社,2015. [20]中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. GB 5009.268—2016,食品中多元素的测定[S].北京:中国标准出版社,2017. [21]国家质量监督检验检疫总局. JJF 1059.1—2012,测量不确定度评定与表示[S].北京:中国质检出版社,2012. [22]国家质量监督检验检疫总局. JJG 1036—2008,电子天平检定规程[S].北京:中国计量出版社,2008. [23]国家质量监督检验检疫总局. JJG 646—2006,移液器检定规程[S].北京:中国计量出版社,2007. [24]国家质量监督检验检疫总局. JJG 196—2006,常用玻璃量器检定规程[S].北京:中国计量出版社,2007. [25]闫顺华,王秀霞,严娅,等.电感耦合等离子体质谱法测定高钙片中铅、砷、铬和镉含量的不确定度评定[J].食品研究与开发,2019,40(16):118-123. [26]齐越,綦峥,杨红,等.石墨炉—原子吸收光谱法测定大米中镉的不确定度评定[J].食品安全质量检测学报,2019,10(17):5848-5852. [27]张潇,李尔春,刘越,等.电感耦合等离子体质谱法和石墨炉原子吸收光谱法测定金银花中镉含量不确定度评估的比较[J].食品安全质量检测学报,2019,10(8):2377-2383. [28]高瑞峰,高孟朝,凌睿,等.ICP-MS测定淀粉铝含量的不确定度评定及改进方法[J].光谱学与光谱分析,2016,36(4):1211-1216. [29]吴坚,宋海燕,陈扉然,等.电感耦合等离子体质谱法测定糕点中铝含量的不确定度评定[J].质谱学报,2013,34(6):367-372.