Effects of Different Salinities on Growth and Osmotic Regulation Gene Expression of Gymnocypris przewalskii
HUANG Shen1, LI Changzhong1, LI Zixuan1, LIU Yanhui1, LIU Fang1, QI Hongfang2, WANG Yang2, JIN Wenjie1
1.College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; 2.Key Laboratory of Breeding and Protection of Gymnocypris przewalskii in Qinghai Province, Rescue Center of Gymnocypris przewalskii, Xining 810016, China
Abstract:Qinghai Lake is the largest inland brackish lake in China. The salinity adaptation mechanism of Gymnocypris przewalskii, a unique and rare fish species living in it, needs to be clarified urgently. Therefore, the growth performance and osmotic regulation genes of G. przewalskii were investigated after salinity stress by physiological index and qPCR and Na+/K+/2Cl- cotransporter 1 (NKCC1), Aquaporin 1 (AQP1), Na+/H+ exchange 1 (NHE1) and Na+/HCO-3 exchange 1 (NBC1) genes were detected. The results showed that there were significant differences in the growth indicators of G. przewalskii under different salinities (P<0.05), indicating that the increase in salinity affected the development of G. przewalskii, and that the growth status were negatively correlated with salinity. NKCC1, NBC1, AQP1 and NHE1 genes were expressed in the gills, kidneys and livers under different salinities, showing certain tissues specificity. It was found that that NKCC1, AQP1, NHE1 and NBC1 genes were involved in the regulation of osmotic pressure of G. przewalskii, with varying the expression level with different salinities, tissue and stress time, reflecting that the gill and kidney were the main organ regulating osmotic pressure. The findings provided a theoretical basis for exploring the survival status and salinity adaptation mechanism of G. przewalskii after migration in Qinghai Lake, and a theoretical guidance for the protection and artificial proliferation and release of native fish germplasm resources in the upper reaches of the Yellow River.
黄屾, 李长忠, 李梓瑄, 刘艳慧, 柳芳, 祁洪芳, 汪洋, 金文杰. 盐度对青海湖裸鲤生长及渗透调节基因的影响[J]. 水产科学, 2022, 41(4): 527-536.
HUANG Shen, LI Changzhong, LI Zixuan, LIU Yanhui, LIU Fang, QI Hongfang, WANG Yang, JIN Wenjie. Effects of Different Salinities on Growth and Osmotic Regulation Gene Expression of Gymnocypris przewalskii. Fisheries Science, 2022, 41(4): 527-536.
[1]朱奕龙.青海湖裸鲤生长与繁殖的研究[D].重庆:西南大学,2018. [2]付生云,周卫国,张涛,等.青海湖裸鲤洄游排卵、受精高峰期的繁殖特征[J].畜牧兽医科技信息,2019(11):33-34. [3]WOOD C M, DU J Z, ROGERS J, et al. Przewalski′s naked carp (Gymnocypris przewalskii):an endangered species taking a metabolic holiday in Lake Qinghai, China[J].Physiological and Biochemical Zoology,2007,80(1):59-77. [4]俞录贤.浅议河流断流对青海湖裸鲤生殖洄游的影响[J].河北渔业,2017(1):28-30. [5]史建全,祁洪芳.青海湖裸鲤增殖放流技术集成及示范[J].青海科技,2018,25(1):24-28. [6]鞠晨曦.公子小丑鱼(Amphiprion ocellaris)胚胎发育的形态学观察及盐度对幼鱼生长的影响[D].上海:上海海洋大学,2013. [7]庄青青.盐度胁迫下尼罗罗非鱼鳃离子细胞和Na+-K+-ATPase a1的渗透调节[D].上海:上海海洋大学,2013. [8]Gordon M S. Fish osmoregulation[J]. The Quarterly Review of Biology,2009,84(1):114-114. [9]李伟.盐度对中华鲟生长的影响机制及中华鲟的等渗点分析[D].武汉:华中农业大学,2014. [10]ZHU H P, LIU Z G, GAO F Y, et al. Characterization and expression of Na+/K+-ATPase in gills and kidneys of the teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2018,224:1-10. [11]YIN F, PENG S M, SUN P, et al. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus[J].Acta Ecologica Sinica,2011,31(1):55-60. [12]崔前进,陈冰,邱丽华,等.低盐胁迫对钝吻黄盖鲽幼鱼鳃Na+/K+-ATP酶、肝脏抗氧化酶和非特异免疫酶的影响[J].广东海洋大学学报,2017,37(6):26-32. [13]MONIRUZZAMAN M, MUKHERJEE J, JACQUIN L, et al. Physiological and behavioural responses to acid and osmotic stress and effects of Mucuna extract in guppies[J].Ecotoxicology and Environmental Safety,2018,163:37-46. [14]SUI Y M, HUANG X Z, KONG H, et al. Physiological responses to salinity increase in blood parrotfish (Cichlasoma synspilum ♀ × Cichlasoma citrinellum ♂)[J].SpringerPlus,2016,5(1):1-12. [15]REILLY B D, CRAMP R L, WILSON J M, et al. Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas:a molecular analysis of ion transporters[J].The Journal of Experimental Biology,2011,214(Pt 17):2883-2895. [16]LORO V L, JORGE M B, SILVA K R D, et al. Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus:protective effects of salinity[J].Aquatic Toxicology,2012,110/111:187-193. [17]BIRRER S C, REUSCH T B H, ROTH O. Salinity change impairs pipefish immune defence[J].Fish & Shellfish Immunology,2012,33(6):1238-1248. [18]CHOI K, COPE W G, HARMS C A, et al. Rapid decreases in salinity, but not increases, lead to immune dysregulation in Nile tilapia, Oreochromis niloticus(L.)[J].Journal of Fish Diseases,2013,36(4):389-399. [19]ABDEL-TAWWAB M, MONIER M N. Stimulatory effect of dietary taurine on growth performance, digestive enzymes activity, antioxidant capacity, and tolerance of common carp, Cyprinus carpio L., fry to salinity stress[J].Fish Physiology and Biochemistry,2018,44(2):639-649. [20]柳旭东,张利民,王际英,等.盐度对水产动物组织中酶活力的影响[J].养殖与饲料,2008(11):68-71. [21]付旭阳,孙健淇,吕军,等.钠—钾—氯协同转运蛋白1相关神经系统疾病研究进展[J].中国现代神经疾病杂志,2021,21(3):223-228. [22]PUSHKIN A, ABULADZE N, LEE I, et al. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family[J].Journal of Biological Chemistry,1999,274(23):16569-16575. [23]SUI H X, HAN B G, LEE J K, et al. Structural basis of water-specific transport through the AQP1 water channel[J].Nature,2001,414(6866):872-878. [24]史建全,祁洪芳,杨建新.青海湖裸鲤资源增殖放流技术[J].河北渔业,2010(1):10-12. [25]周永欣,章宗涉.水生生物毒性试验方法[M].北京:农业出版社,1989. [26]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods,2001,25(4):402-408. [27]ADNAN M, MORTON G, HADI S. Analysis of rpoS and bolA gene expression under various stress-induced environments in planktonic and biofilm phase using 2^-ΔΔCT method[J].Molecular and Cellular Biochemistry,2011,357(1/2):275-282. [28]HWANG P P, LEE T H, LIN L Y. Ion regulation in fish gills:recent progress in the cellular and molecular mechanisms[J].American Journal of Physiology.Regulatory, Integrative and Comparative Physiology,2011,301(1):R28-R47. [29]严银龙,袁新程,施永海,等.盐度对褐菖鲉幼鱼生长、耗氧率和排氨率的影响[J].大连海洋大学学报,2019,34(4):545-551. [30]田璐.盐度对黄姑鱼生存生长、非特异性免疫及肠道菌群的影响[D].舟山:浙江海洋大学,2019. [31]HEBERT S C, MOUNT D B, GAMBA G. Molecular physiology of cation-coupled Cl- cotransport:the SLC12 family[J].Pflügers Archiv European Journal of physiology,2004,447(5):580-593. [32]KANG C K, YANG W K, LIN S T, et al. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2013,164(1):181-191. [33]CHOI J H, LEE K M, INOKUCHI M, et al. Morphofunctional modifications in gill mitochondria-rich cells of Mozambique tilapia transferred from freshwater to 70% seawater, detected by dual observations of whole-mount immunocytochemistry and scanning electron microscopy[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2011,158(1):132-142. [34]林浩然.鱼类生理学[M].广州:中山大学出版社,2011. [35]HIROI J, MIYAZAKI H, KATOH F, et al. Chloride turnover and ion-transporting activities of yolk-sac preparations (yolk balls) separated from Mozambique tilapia embryos and incubated in freshwater and seawater[J].The Journal of Experimental Biology,2005,208(Pt 20):3851-3858. [36]INOKUCHI M, HIROI J, WATANABE S, et al. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2008,151(2):151-158. [37]GAWENIS L R, BRADFORD E M, PRASAD V, et al. Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO-3 cotransporter[J].Journal of Biological Chemistry,2007,282(12):9042-9052. [38]张金生.低盐胁迫对大菱鲆肝脏代谢酶和渗透调节基因表达的影响[D].上海:上海海洋大学,2020. [39]EDWARDS S L, WALL B P, MORRISON-SHETLAR A, et al. The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus)[J].Journal of Experimental Zoology Part A:Comparative Experimental Biology,2005,303A(6):464-475. [40]张金生,刘志峰,马爱军,等.大菱鲆水通道蛋白(AQP1、AQP3)以及离子通道蛋白(CFTR、NHE1)对低盐胁迫的响应[J].渔业科学进展,2020,41(4):41-49. [41]GONEN T, WALZ T. The structure of aquaporins[J].Quarterly Reviews of Biophysics,2006,39(4):361-396. [42]JEONG S Y, KIM J H, LEE W O, et al. Salinity changes in the anadromous river pufferfish, Takifugu obscurus, mediate gene regulation[J].Fish Physiology and Biochemistry,2014,40(1):205-219. [43]赵超平,郭华阳,张健,等.卵形鲳鲹AQP1a分子特征及其对急性盐度胁迫的表达响应[J].南方水产科学,2018,14(4):56-65. [44]MICHAEL K, KREISS C M, HU M Y, et al. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2016,193:33-46. [45]常玉梅,梁利群.耐盐碱鱼类的生理和分子机制研究进展[J].水产学报,2021,45(5):798-812. [46]ESBAUGH A J, HEUER R, GROSELL M. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta[J].Journal of Comparative Physiology B,2012,182(7):921-934. [47]HEUER R M, GROSELL M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish[J].American Journal of Physiology.Regulatory, Integrative and Comparative Physiology,2014,307(9):R1061-R1084. [48]ZHANG K Q, ZHANG X Y, WEN H S, et al. Spotted sea bass (Lateolabrax maculatus) cftr, nkcc1a, nkcc1b and nkcc2:genome-wide identification, characterization and expression analysis under salinity stress[J].Journal of Ocean University of China,2019,18(6):1470-1480.