Analysis of Fatty Acid Composition in Muscle of Four Species of Lizardfishes (Synodontidae)
ZHUANG Haiqi1,2, LIU Jiangqin2, CUI Liao1,3, LUO Hui3,4
1. Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China; 2. Chemistry Teaching and Research Section, Guangdong Medical University, Zhanjiang 524023, China; 3. Marine Medicine Resaerch Institute, Guangdong Medical University, Zhanjiang 524023, China; 4. The key Laboratory of Research & Development Marine Microorganism and Microalgae in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China
Abstract:Four species of lizardfishes, including Saurida elongate, Saurida undosquamis, Synodus jaculum and Trachinocephalus myops, were collected from Zhanjiang seas of Guangdong Province. Twenty-one fatty acids in muscle were determined by gas chromatography. The content of saturated fatty acid was 31.14%—42.16%, monounsaturated fatty acid was 11.73%—21.73%, and polyunsaturated fatty acid (PUFA) was 31.64%—55.32%. The contents of omega-6 and omega-3 fatty acids were 4.49%—9.77% and 22.61%—45.55%, respectively. The content of eicosapentenoic acid (EPA)+docosahexaenoic acid (DHA) was as high as 30.49% in Saurida undosquamis and 42.32% in Synodus jaculum, and these two species of fish had high nutritional value of fatty acids. The correlation analysis between the main fatty acids of four species of lizardfish showed that C14:0 and C16:1, C14:0 and C18:1, C16:0 and C22:5(ω-3), C16:1 and C18:1, C18:1 and C22:5(ω-3) were significantly positively correlated; C14:0 and C20:4(ω-3), C16:1 and C20:4(ω-3), C14:0 and C22:6(ω-3), C16:1 and C22:6(ω-3), C18:1 and C22:6(ω-3), C22:5(ω-3) and C22:6(ω-3) were significantly negatively correlated. Cluster analysis exactly divides 4 species of lizardfish in the family into 3 categories (genera).
庄海旗, 刘江琴, 崔燎, 罗辉. 4种狗母鱼科鱼类肌肉脂肪酸分析[J]. 水产科学, 2020, 39(4): 602-608.
ZHUANG Haiqi, LIU Jiangqin, CUI Liao, LUO Hui. Analysis of Fatty Acid Composition in Muscle of Four Species of Lizardfishes (Synodontidae). Fisheries Science, 2020, 39(4): 602-608.
[1]焦燕,陈大刚,任一平. 西太平洋狗母鱼科鱼类种类多样性的研究[J]. 青岛海洋大学学报,1999,29(4):617-626. [2]舒黎明,邱永松. 南海北部多齿蛇鲻生物学分析[J]. 中国水产科学,2004,11(2):154-158. [3]孙冬芳,董丽娜,李永振,等. 南海北部海域多齿蛇鲻的种群分析[J]. 水产学报,2010,34(9):1387-1394. [4]黄梓荣,陈作志. 南沙群岛西南陆架区多齿蛇鲻的资源变动[J]. 海洋湖沼通报,2005(3):50-56. [5]孙翔宇,高贵田,段爱莉,等. 多不饱和脂肪酸的研究进展[J]. 食品工业科技,2012,33(7):418-423. [6]许友卿,韩进华,陈亨德,等. 高度不饱和脂肪酸对水生动物生长、发育和繁殖的影响与机理[J]. 水产科学,2018,37(2):271-277. [7]张良,刘美玲,董强,等. 硝酸银硅胶柱分离纯化蛇鲻鱼油中的EPA和DHA[J]. 中国粮油学报,2011,26(12):63-68. [8]刘书成,李德涛,欧冠强,等. 尿素包合法富集蛇鲻鱼油中EPA和DHA的研究[J]. 广东海洋大学学报,2008,28(6):61-65. [9]王保前,张莉. 湛江海洋经济发展研究[J]. 中国渔业经济,2010,28(5):27-32. [10]Stark K D, Elswyk E V, Higgins M R, et al. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults[J]. Progress in Lipid Research,2016,63(1):132-152. [11]李妍,王静,李麒龙,等. EPA与DHA最新研究进展[J]. 农产品加工,2013(2):6-13. [12]Floyd H C, Rahul D, Lindsay M, et al. Precision nutrition and omega-3 polyunsaturated fatty acids: a case for personalized supplementation approaches for the prevention and management of human diseases[J]. Nutrients,2017,9(11):1165. [13]Badriah A, Zubaida A N, Shaista A. Role of some functional lipids in preventing diseases and promoting health[J]. Journal of King Saud University—Science,2012,24(4):319-329. [14]中华人民共和国卫生部. GB/T 5009.3—2010 食品中水分的测定[S]. 北京:中国标准出版社,2010. [15]国家食品药品监督管理总局. GB 5009.6—2016 食品中脂肪的测定[S]. 北京:中国标准出版社,2016. [16]蔡颂文,韩婷,韩玉麒,等. 富含缓释淀粉高单不饱和脂肪酸型肠内营养制剂对超重的2型糖尿病病人血糖和血脂的影响[J]. 肠外与肠内营养,2014,21(3):138-141. [17]蒲凤琳,孙伟峰,车振明. 功能性油脂研究与开发进展[J]. 粮食与油脂,2016,29(8):5-8. [18]靳革,李娟,赵福阳,等. 油脂中脂肪酸的构成及功能研究进展[J]. 饲料与畜牧,2017,20(1):60-61. [19]Doug B, Bill L. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids,2015,99(1):19-23. [20]Cottin S C, Alsaleh A, Sanders T A, et al. Lack of effect of supplementation with EPA or DHA on platelet-monocyte aggregates and vascular function in healthy men[J]. Nutrition, Metabolism and Cardio-vascular Diseases,2016,26(8):743-751. [21]杨金生,霍健聪,夏松养. 不同品种金枪鱼营养成分的研究与分析[J]. 浙江海洋学院学报:自然科学版,2013,32(5):393-397. [22]周聃,徐坤华,赵巧灵. 2种大洋性金枪鱼赤身营养价值分析与评价[J]. 食品与发酵工业,2014,40(11):13-18. [23]罗殷,王锡昌,刘源. 黄鳍金枪鱼食用品质的研究[J]. 食品科学,2008,29(9):476-480. [24]Bekir T, Serkan K, Sevim K. Changes during fishing season in the fat content and fatty acid profile of edible muscle, liver and gonads of anchovy (Engraulis encrasicolus) caught in the Turkish Black Sea[J]. Analysis of Food Toxins and Toxicants,2011,46(4):800-810. [25]Fardin K A, Delmonte P, John K, et al. Seasonal fat and fatty acids variations of seven marine fish species from the Mediterranean Sea[J]. European Journal of Lipid Science and Technology,2011,113(12):1491-1498. [26]左珊珊,林艳丽,张伟. DHA与EPA的研究进展[J]. 中国生物制品学杂志,2012,25(11):1558-1561. [27]Lawrence G D. The fats of life: essential fatty acids in health and disease[M].New Brunswick:Rutgers University Press,2010:16-29. [28]Brett D, Glencross. Exploring the nutritional demand for essential fatty acids by aquaculture species[J]. Reviews in Aquaculture,2009,1(2):71-124. [29]Gunveen K, David C S, Manohar G, et al.Docosapentaenoic acid (22:5n-3):a review of its biological effects[J]. Progress in Lipid Research,2011,50(1):28-34. [30]Gunveen K, Denovan P B, Daniel B. Short-term docosapentaenoic acid (22:5n-3) supplementation increases tissue docosapentaenoic acid, DHA and EPA concentrations in rats[J]. British Journal of Nutrition,2010,103(1):32-37.