Effects of Green Alga Chlorella vulgaris on Microalga Community and Its Relationship with Environmental Factors in Pacific White Shrimp Litopenaeus vannamei Culture Ponds
YAO Dongmei, ZHANG Dajuan, ZHANG Shulin, ZHANG Ying
Key Laboratory of Aqua-ecology and Aquaculture of Tianjin, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
Abstract:In order to explore the effects of inoculation of green alga Chlorella vulgaris on the community structure of microalgae and its relationship with environmental factors in Pacific white shrimp Litopenaeus vannamei culture ponds, two culture ponds with the same conditions were selected as the control group without inoculation of the green alga and the experimental group with inoculation of the green alga every 10 days, and the changes in physical and chemical factors and microalgae community structure in each treatment group were monitored regularly. The results showed that a total of 36 genera (5 phyla) of microalgae were identified in the control group, and 38 genera (species) in 5 phyla were identified in the experimental group. The number of Chlorophyta species in the two ponds accounted for more than 60% of the total species. Compared with the control group, the average density of Cyanophyta was decreased by 76.32% and that of Chlorella increased by 70.32%. The analysis of community structure revealed that the structure of microalgae in the experimental group changed stably with better continuity, and the contribution rate of Microcystis aeruginosa was decreased significantly, while that of the alga was increased significantly. Based on the redundancy analysis of microalgae density and temperature, pH, dissolved oxygen, transparency, redox potential and other environmental physical and chemical factors, it was found that temperature, pH and dissolved oxygen had significant effects on phytoplankton density (P<0.01), while the other two environmental factors had poor effects on phytoplankton density. Compared with the control group, the average contents of nitrite and ammonia nitrogen in the test group were decreased by 47.27% and 44.26%, respectively. Therefore, the finding suggests that the C. vulgaris inoculation frequency be 10 days, and the inoculation be at 8:00.
姚冬梅, 张达娟, 张树林, 张迎. 小球藻对凡纳滨对虾池塘微藻群落的影响及与环境因子的关系[J]. 水产科学, 2022, 41(4): 581-588.
YAO Dongmei, ZHANG Dajuan, ZHANG Shulin, ZHANG Ying. Effects of Green Alga Chlorella vulgaris on Microalga Community and Its Relationship with Environmental Factors in Pacific White Shrimp Litopenaeus vannamei Culture Ponds. Fisheries Science, 2022, 41(4): 581-588.
[1]高攀峰,温小娟,沈惜坤,等.小球藻育藻条件优化及其在高位池对虾养殖中的应用[J].福建农业学报,2018,33(5):463-468. [2]CAO L, NAYLOR R, HENRIKSSON P, et al. Global food supply. China′s aquaculture and the world′s wild fisheries[J].Science,2015,347(6218):133-135. [3]YUSOFF F M, BANERJEE S, KHATOON H, et al. Biological approaches in management of nitrogenous compounds in aquaculture systems[J]. Dynamic Biochemistry Process Biotechnology & Molecular Biology,2011,5:21-31. [4]郭丽芸,王庆,姜伟,等.固定化微生物制剂应用于水产养殖的研究进展[J].水产养殖,2018,39(11):23-26. [5]李云梦.凡纳滨对虾养殖池塘中的微生物调控作用及机制[D].杭州:浙江大学,2018. [6]OSWALD W J, GOTAAS H B, GOLUEKE C C, et al. Algae in waste treatment [J]. Sewage and Industrial Wastes,1957,29(4):437-457. [7]PORRELLO S, LENZI M, TOMASSETTI P, et al. Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system:Ⅱ.nitrogen and phosphorus content in macroalgae and sediment[J].Aquaculture,2003,219(1/2/3/4):531-544. [8]郑侠飞.微生物制剂和碳源对水产养殖环境的影响及作用机制[D].杭州:浙江大学,2017. [9]陈晓清,苏育才.小球藻的应用研究进展[J].生物学教学,2012,37(1):8-9. [10]WOOD R. Acute animal and human poisonings from cyanotoxin exposure—a review of the literature[J].Environment International,2016,91:276-282. [11]朱为菊.小球藻不同接种密度对铜绿微囊藻生长抑制的研究[J].安徽农学通报,2019,25(24):137-140. [12]张坤,戴习林.5种微藻及其密度对铜绿微囊藻生长的影响[J].广东农业科学,2012,39(10):166-169. [13]张振华,韩士群,严少华,等.虾池接种小球藻对浮游生物及水化学环境的影响[J].水产科技情报,2000,27(2):67-69. [14]HARGREAVES J A, KUCUK S. Effects of diel un-ionized ammonia fluctuation on juvenile hybrid striped bass, channel catfish, and blue tilapia[J].Aquaculture,2001,195(1/2):163-181. [15]蔡志辉.养殖南美白对虾池塘水质调控技术[J].中国水产,2006(9):38-39. [16]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:上海科学技术出版社,1980. [17]国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [18]杨秀兰,王爱敏,薄学锋,等.浮游生物在盐碱地封闭式对虾养殖中的生态作用[J].齐鲁渔业,2002,19(10):5-8. [19]吴荣军,李瑞香,朱明远,等.应用PRIMER软件进行浮游植物群落结构的多元统计分析[J].海洋与湖沼,2006,37(4):316-321. [20]彭水秀,张坤,邓道贵,等.南漪湖春夏季浮游植物群落结构及其与环境因子的关系[J].生物学杂志,2019,36(1):35-38. [21]胡韧,林秋奇,段舜山,等.热带亚热带水库浮游植物叶绿素a与磷分布的特征[J].生态科学,2002,21(4):310-315. [22]张瑜斌,龚玉艳,陈长平,等.高位虾池养殖过程浮游植物群落的演替[J].生态学杂志,2009,28(12):2532-2540. [23]秦雪,徐宾铎,杨晓改,等.黄河口及其邻近水域夏季浮游植物群落结构及其与环境因子的关系[J].水产学报,2016,40(5):711-720. [24]蓝于倩,袁一文,彭亮,等.江谷水库鱼类网箱养殖富营养化及浮游植物功能群的指示作用[J].生态环境学报,2015,24(6):1028-1036. [25]XU H, PAERL H W, QIN B Q, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China[J].Limnology and Oceanography,2010,55(1):420-432. [26]蔡后建,陈宇伟,蔡启铭,等.太湖梅梁湾口浮游植物初级生产力及其相关因素关系的研究[J].湖泊科学,1994,6(4):340-347. [27]KUNLASAK K, CHITMANAT C, WHANGCHAI N, et al. Relationships of dissolved oxygen with chlorophyll-a and phytoplankton composition in tilapia ponds[J].International Journal of Geosciences,2013,4(5):46-53. [28]吕晋,邬红娟,马学礼,等.武汉市湖泊蓝藻分布影响因子分析[J].生态环境,2008,17(2):515-519. [29]胡长玉,方建新,李伟,等.新安江(安徽段)及其支流丰水期浮游植物功能群[J].生态学杂志,2019,38(4):1013-1021. [30]周宇建,张永勇,花瑞祥,等.淮河中上游浮游植物时空分布特征及关键环境影响因子识别[J].地理研究,2016,35(9):1626-1636. [31]沈会涛,刘存歧.白洋淀浮游植物群落及其与环境因子的典范对应分析[J].湖泊科学,2008,20(6):773-779. [32]刘梅,原居林,何海生,等.微藻在南美白对虾养殖废水中的生长及净化效果[J].应用与环境生物学报,2018,24(4):866-872. [33]张继平,郭照良.小球藻对降低南美白对虾养殖水体中亚硝酸盐氮含量的研究[J].水产科学,2006,25(10):517-519. [34]李原,张梅,王若南.滇池的水华蓝藻的时空变化[J].云南大学学报(自然科学版),2005,27(3):272-276. [35]SEDMAK B, KOSI G. The role of microcystins in heavy cyanobacterial bloom formation[J].Journal of Plankton Research,1998,20(4):691-708. [36]苏发文,高鹏程,来琦芳,等.铜绿微囊藻和小球藻对水环境pH的影响[J].中国水产科学,2016,23(6):1380-1388.