Analysis of Genetic Diversity of Kuruma Prawn Marsupenaeus japonicus Based on Mitochondrial Cytb and D-Loop Sequences
DU Jinghao1, WANG Weifeng1, CHEN Xiuli2, HOU Chunxiu1, WANG Huanling1
1. College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; 2. Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Breeding, Guangxi Zhuang Autonomous Region Academy of Fishery Sciences, Nanning 530021, China
Abstract:About 20 samples of kuruma prawn Marsupenaeus japonicus were collected from 5 coastal waters of Zhoushan, Fuzhou, Xiamen, Beihai and Zhanjiang in Zhejiang Province, Fujian Province, Guangdong Province and Guangxi Zhuang Autonomous Region from August 2018 to March 2019, respectively,and the genetic structure and variation of these five populations were analyzed by mitochondrial cytochrome b gene and DNA control region in muscle of the sixth pleopod to understand the current status of germplasm resources of kuruma prawn in China. Cytb and D-Loop sequences in five populations of kuruma prawn revealed that the A+T content was 60.65% and 82.54%, significantly higher than that of C+G (39.35% and 17.46%). 76 and 75 parsimony informative sites, 55 and 78 of haplotypes were also detected, with haplotype diversity of 0.969 in Cytb and 0.995 in D-Loop, and nucleotide diversity of 0.033 in Cytb and 0.036 in D-Loop. The genetic distance within the populations was varied from 0.004 to 0.022 and 0.005 to 0.017, and the genetic distance among populations was between 0.007 to 0.068 in Cytb and 0.012 to 0.075 in D-Loop. Molecular variance variation analysis showed that inter-population variation was the main source of variation, accounting for 70.01% and 74.39% of the total variation. The haplotype Neighbor-joining tree revealed that Beihai and Zhanjiang populations were clustered together, and the other three populations were clustered into one branch, indicating that the identical system showed different degrees of differentiation. The population demographic analyses revealed that these populations remained relatively stable and had not experienced genetic bottleneck effects and significant expansion. These findings indicated that the five populations of kuruma prawn were more differentiated and had higher genetic diversity, as higher polymorphisms of haplotypes and nucleotides.
[1]庄志猛,孔杰,石拓,等. 日本对虾野生和养殖群体遗传多样性的RAPD分析[J]. 自然科学进展,2001,11(3):28-33. [2]Garton D W, Koehn R K, Scott T M. Multiple locus heterozygosity and physiological energetics of growth in the cootclam, Mulinia laterals, from a natural population[J]. Genetics,1984,108(2):445-455. [3]王存芳,曾勇庆,杜立新,等. 线粒体DNA(mtDNA)的研究进展[J]. 动物科学与动物医学,2001,18(1):16-18. [4]Sbisa E, Tanzariello F, Reyes A, et al. Mammalian mitochondrial D-loop region structure analysis: identification of new conserved sequences and their functional and evolutionary implications[J]. Gene,1997,205(1):125-140. [5]Tsoi K H, Chan T Y, Chu K H. Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacific[J]. Marine Biology,2007,150(6):1345-1364. [6]Tsoi K H, Ma K Y, Wu T H, et al. Verification of the cryptic species Penaeus pulchricaudatus in the commercially important kuruma shrimp P. japonicus (Decapoda: Penaeidae) using molecular taxonomy[J]. Invertebrate Systematics,2014,28(5):476-490. [7]郭慧,申玉春. 三个野生群体日本囊对虾遗传多样性的SSR分析[J]. 生物技术通报,2011,23(3):130-134. [8]孔沛球,申玉春,刘堃. 不同地理群体日本囊对虾遗传多样性微卫星DNA分析[J]. 水产科学,2011,30(7):409-414. [9]郭新红,刘少军,刘巧,等. 鱼类线粒体DNA研究新进展[J]. 遗传学报,2004,31(9):983-1000. [10]邓娟,张红平,巴贵,等. 基于Cytb基因多态性研究西藏地区8个藏山羊群体遗传结构及母系起源[J]. 畜牧兽医学报,2018,49(1):65-74. [11]胡丹,钟金城,柴志欣. 新疆塔什库尔干牦牛mtDNA Cytb基因和D-Loop区遗传多样性及系统进化分析[J]. 家畜生态学报,2018,39(11):11-16. [12]程起群,马春艳,庄平,等. 基于线粒体Cytb基因标记探讨凤鲚3群体遗传结构和进化特征[J]. 水产学报,2008,23(1):1-7. [13]Bremer J A, Mejuto J, Greig T W, et al. Global population structure of the swordfish (Xiphiasgladius L.) as revealed by analysis of the mitochondrial DNA control region[J]. Journal of Experimental Marine Biology and Ecology,1996,197(2):295-310. [14]Jiu L C, Wei W L, Xing X H, et al. Genetic diversity and population structure analysis of Qinghai-Tibetan plateau schizothoracine fish (Gymnocypris dobula) based on mtDNA D-loop sequences[J]. Biochemical Systematics & Ecology,2016,69(4):152-160. [15]白云,王妍,胡莹,等. 5种类型鲤鱼线粒体DNA D-loop及邻近区段的遗传多样性分析[J]. 水产科学,2019,38(4):498-505. [16]Muchadeyi F C, Eding H, Simianer H, et al. Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens[J]. Animal Genetics,2010,39(6):615-622. [17]白晓慧,杨华,孟一耕,等. 大鳞副泥鳅群体线粒体DNA D-loop序列遗传变异分析[J]. 水产科学,2018,37(5):658-664. [18]鲍毅新,孙波,张龙龙,等. 对动物组织DNA提取方法的改进及PCR检测[J]. 浙江师范大学学报:自然科学版,2009,32(3):317-321. [19]Rozas J, Sanchez D J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics,2003,19(18):2496-2497. [20]Tamura K, Stecher G, Peterson D, et al. MEGA (Molecular evolutionary genetics analysis), Version 6.0[J]. Molecular Biology and Evolution,2013,30(12):2725-2729. [21]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution,1987,4(4):406-425. [22]Excoffier L, Laval G, Schneider S. Arlequin Version 3.01: anintegrated software package for population on genetics data analysis[J]. Evolutionary Bioinformatics Online,2005,23(1):47-50. [23]Wright S. The genetical structure of populations[J]. Annals of Eugenics,1951,15(4):323-354. [24]Lorenza B, Santiago N, Burkman E J, et al. Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation[J]. BMC Evolutionary Biology,2013,13(1):267-267. [25]曾凡荣,王军,周孔霖,等. 基于线粒体Cytb基因探讨我国日本囊对虾4个地理群体的遗传结构及种群分化[J]. 厦门大学学报:自然科学版,2010,49(5):701-706. [26]胡静,侯新远,尹绍武,等. 基于mtDNA COⅠ和Cytb基因序列对南中国海不同海域波纹唇鱼群体遗传多样性的研究[J]. 水生生物学报,2014,38(6):1008-1016. [27]Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases[J]. Molecular Biology and Evolution,1992,9(4):678-687. [28]孙鹏,彭士明,尹飞,等. 南海海区鲻鱼(Mugil cephalus)COⅠ基因序列的遗传多样性分析[J]. 海洋与湖沼,2011,42(1):131-136. [29]刘若余,夏先林,雷初朝,等. 贵州黄牛mtDNA D-loop遗传多样性研究[J]. 遗传,2006,28(3):279-284. [30]Tzeng T D, Yeh S Y, Hui C F. Population genetic structure of the kuruma prawn (Penaeus japonicus) in East Asia inferred from mitochondrial DNA sequences[J]. Journal of Marine Science,2004,61(3):913-920. [31]Billington N, Hebert P D N. Mitochondrial DNA diversity in fishes and its implications for introductions[J]. Canadian Journal of Fisheries and Aquatic Sciences,1991,48(1):80-94. [32]曹祥荣,束峰珏,张锡然,等. 毛冠鹿与3种麋属动物的线粒体细胞色素b的系统进化分析[J]. 动物学报,2002,48(1):44-49. [33]Yang X G, Wang Y Q, Zhou K Y. The authentication of oviductus ranae and its original animals by using molecular marker[J]. Biological and Pharmaceutical Bulletin,2002,25(8):1035-1039. [34]Ma C Y, Cheng Q Q, Zhang Q Y, et al. Genetic variation of Coilia ectenes (Clupeiformes: Engraulidae) revealed by the complete cytochrome b sequences of mitochondrial DNA[J]. Journal of Experimental Marine Biology and Ecology,2010,385(1):14-19. [35]肖武汉,张亚平. 鱼类线粒体DNA的遗传与进化[J]. 水生生物学报,2000,24(4):384-391. [36]刘红,张海强,蔡生力,等. 基于线粒体DNA控制区序列的6个凡纳滨对虾(Litopenaeus vannamei)养殖群体的遗传多样性分析[J]. 渔业科学进展,2016,37(1):63-73. [37]Francisco A K D, Junior P M G. Genetic distance between broodstocks of the marine shrimp Litopenaeus vannamei (Decapoda, Penaeidae) by mtDNA analyses[J]. Genetics and Molecular Biology,2005,28(2):258-261. [38]Grant W, Bowen B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. The Journal of Heredity,1998,89(5):415-426. [39]Dall W, Hill B J, Rothlisberg P C, et al. The biology of the Penaeidae[M]. London:Academic Press,1990. [40]Lehmann T, Hawley W A, Grebert H, et al. The effective population size of Anopheles gambiae in Kenya: implications for population structure[J]. Molecular Biology and Evolution,1998,15(3):264-276.