Contribution of Exogenous Sedimented Particulate Organic Matter to Sea Cucumber Ponds under Different Management Modes
WANG Yulong1, ZHANG Jinyuan2, YANG Shen3, LI Lezhou1, YANG Gengjie1, LEI Zhaolin1, ZHOU Wei1
1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; 2. Haikui Environmental Monitoring Science and Technology Co., Ltd, Dalian 116000, China; 3. Shanghai YIS Communication Technology Co., Ltd, Shanghai 201210, China
Abstract:Sedimented particulate organic matter is an important sea cucumber feed source. To understand the effect of different management modes on the proportion of exogenous sedimented particulate organic matter in sea cucumber ponds, a natural tidal pond, a microporous aeration pond, and a water quality regulator pond were selected as subjects in the study and the period from March to September was divided into the growth and dormancy stages of sea cucumber according to water temperature. The contribution of the exogenous sedimented particulate organic matter was calculated in different ponds by collecting sediments, suspended and sedimented particles in the ponds and sedimented particles in tidewater using the carbon-nitrogen mass balance equation of stable isotope techniques. The source of the sedimented particulate organic matter was roughly identified based on the C/N (TOC/TN) ratio. The results showed that the sedimented particulate organic matter in the experimental ponds was primarily derived from algae, and the contribution of the endogenous sedimented particulate organic matter was increased in all ponds. The water quality regulator pond showed the minimal average contribution (81.01%), whereas there was the maximal average contribution (84.48%) in the natural tidal pond. Combining the plankton biomass and nutrient content in the three ponds during the experiment, it was found that the material circulation was more rapidly in the water in the regulator farm pond than that in the other two ponds. The findings show that the material circulation rate in the water quality regulator pond is the highest, which is beneficial to naturally increase the biological food in the pond and to maintain a better breeding environment.
[1]宋金明,李学刚,袁华茂,等.渤黄东海生源要素的生物地球化学[M].北京:科学出版社,2019:7-9,341-343. [2]PILDITCH C A, MILLER D C. Phytoplankton deposition to permeable sediments under oscillatory flow:effects of ripple geometry and resuspension[J].Continental Shelf Research,2006,26(15):1806-1825. [3]DANOVARO R, DELLA CROCE N, DELL′ANNO A, et al. Seasonal changes and biochemical composition of the labile organic matter flux in the Cretan Sea[J].Progress in Oceanography,2000,46(2/3/4):259-278. [4]任贻超.刺参(Apostichopus japonicus Selenka)养殖池塘不同混养模式生物沉积作用及其生态效应[D].青岛:中国海洋大学,2012. [5]卢超超,孙永军,高勤峰,等.不同换水频率对刺参养殖池塘底泥环境的影响[J].海洋湖沼通报,2014(4):59-66. [6]杨长明,荆亚超,沈烁,等.微孔曝气与覆盖对城市重污染河道底泥磷形态分布及释放过程的影响[J].环境化学,2015,34(6):1150-1157. [7]李燕,李建忠,叶军强,等.微孔曝气增氧与叶轮增氧机增氧在南美白对虾池塘养殖的应用比较[J].渔业现代化,2012,39(6):21-25. [8]王玮,陆庆刚,顾海涛,等.微孔曝气增氧机的增氧能力试验[J].水产学报,2010,34(1):97-100. [9]刘平,王欣.降低曝气装置堵塞率的研究[J].机电产品开发与创新,2014,27(5):25-27. [10]王德一.活性污泥法的最佳曝气量[J].煤矿设计,1985,17(3):45-48. [11]王祖峰.仿刺参养殖池塘三种水质控制技术效果的比较[D].大连:大连海洋大学,2016. [12]孙广伟,周玮,党子乔,等.3种水质调控方式下刺参池塘初级生产力的周年变化[J].水产学报,2020,44(4):632-641. [13]党子乔,周玮,雷兆霖,等.三种水质调控方式对海参池塘沉积物中底泥耗氧率周年变化的影响[J].中国水产,2019(12):78-80. [14]魏亚南,张东升,林青,等.3种水质调控方式下参池沉积物酶活性的比较研究[J].水产科学,2020,39(2):193-199. [15]雷兆霖,党子乔,张东升,等.3种水质调控方式下参池沉积物—水界面N、P通量的研究[J].水产科学,2021,40(3):354-360. [16]THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems:evidence from the Tay estuary, Scotland[J].Estuarine,Coastal and Shelf Science,1994,38(3):219-233. [17]MATSON E A, BRINSON M M. Stable carbon isotopes and the C:N ratio in the estuaries of the Pamlico and Neuse rivers, north Carolina[J]. Limnology and Oceanography,1990,35(6):1290-1300. [18]张凌,陈繁荣,杨永强,等.珠江口及近海沉积有机质来源判断[J].海洋环境科学,2008,27(5):447-451. [19]余俊清,王小燕,李军,等.湖泊沉积有机碳同位素与环境变化的研究进展[J].湖泊科学,2001,13(1):72-78. [20]YE L X, RITZ D A, FENTON G E, et al. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis[J].Journal of Experimental Marine Biology and Ecology,1991,145(2):161-174. [21]皮坤,张敏,李庚辰,等.人工饵料对主养黄颡鱼和主养草鱼池塘沉降颗粒有机质贡献的同位素示踪[J].水生生物学报,2014,38(5):929-937. [22]李学梅,朱永久,王旭歌,等.稳定同位素技术分析不同养殖方式下鳙饵料的贡献率[J].中国水产科学,2017,24(2):278-283. [23]隋锡林.海参增养殖[M].北京:农业出版社,1990:54-56. [24]PHILLIPS D L, KOCH P L. Incorporating concentration dependence in stable isotope mixing models[J].Oecologia,2002,130(1):114-125. [25]SUN Z L, GAO Q F, DONG S L, et al. Seasonal changes in food uptake by the sea cucumber Apostichopus japonicus in a farm pond:evidence from C and N stable isotopes[J]. Journal of Ocean University of China,2013,12(1):160-168. [26]杨小龙,朱明远.浮游植物营养代谢研究新进展[J].黄渤海海洋,1990,8(3):65-74. [27]马红波,宋金明,吕晓霞.渤海南部海域柱状沉积物中氮的形态与有机碳的分解[J].海洋学报(中文版),2002,24(5):64-70. [28]RAU G H, TAKAHASHI T, DES MARAIS D J, et al. The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water:data from a JGOFS site in the northeast Atlantic Ocean and a model[J]. Geochimica et Cosmochimica Acta,1992,56:1413-1419. [29]KENNEDY H, ROBERTSON J. Variations in the isotopic composition of particulate organic carbon in surface waters along an 88°W transect from 67°S to 54°S[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1995,42(4/5):1109-1122. [30]HEDGES J I, CLARK W A, QUAY P D, et al. Compositions and fluxes of particulate organic material in the Amazon River[J].Limnology and Oceanography,1986,31(4):717-738. [31]GRAHAM M C, EAVES M A, FARMER J G, et al. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the forth estuary, Scotland[J].Estuarine, Coastal and Shelf Science,2001,52(3):375-380. [32]俞志明,WASER N A D, HARRISON P J. 不同氮源对海洋微藻氮同位素分馏作用的影响[J].海洋与湖沼,2004,35(6):524-529. [33]MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J].Chemical Geology,1994,114(3/4):289-302. [34]CIFUENTES L A, COFFIN R B, SOLORZANO L, et al. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary[J].Estuarine, Coastal and Shelf Science,1996,43(6):781-800. [35]OWENS N J P. Variations in the natural abundance of 15N in estuarine suspended particulate matter:a specific indicator of biological processing[J].Estuarine, Coastal and Shelf Science,1985,20(4):505-510. [36]PETERSON B J, HOWARTH R W, GARRITT R H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs[J].Science,1985,227(4692):1361-1363. [37]WU Y, ZHANG J, LI D J, et al. Isotope variability of particulate organic matter at the PN section in the East China Sea[J].Biogeochemistry,2003,65(1):31-49. [38]EMERSON S, HEDGES J I. Processes controlling the organic carbon content of open ocean sediments[J].Paleoceanography,1988,3(5):621-634. [39]FONTUGNE M R, JOUANNEAU J M. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary:evidence from measurements of carbon isotopes in organic matter from the Gironde system[J].Estuarine, Coastal and Shelf Science,1987,24(3):377-387. [40]SAVOYE N, AMINOT A, TRÉGUER P, et al. Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France)[J].Marine Ecology Progress Series,2003,255:27-41. [41]WONG W W, SACKETT W M. Fractionation of stable carbon isotopes by marine phytoplankton[J].Geochimica et Cosmochimica Acta,1978,42(12):1809-1815. [42]李雪松.我国主要海洋养殖水域硅藻的种类组成与分布特征[D].厦门:厦门大学,2008. [43]刘晓威,姜森颢,周一兵,等.大连地区仿刺参养殖池塘底栖硅藻生产状况的周年变化研究[J].水产科学,2012,31(11):679-682. [44]尹佳,王丽丽,姚翔,等.青堆子湾养殖池塘与临近海域悬浮颗粒物的平面分布与季节变化[J].现代农业科技,2013(13):239-241. [45]赵文,张义伟,魏杰,等.刺参养殖池塘颗粒悬浮物结构及其沉积作用[J].生态学报,2009,29(11):5749-5757. [46]杨东方,陈生涛,胡均,等.光照、水温和营养盐对浮游植物生长重要影响大小的顺序[J].海洋环境科学,2007,26(3):201-207. [47]章守宇,张焕君,焦俊鹏,等.海州湾人工鱼礁海域生态环境的变化[J].水产学报,2006,30(4):475-480. [48]郭超,张东升,林青,等.3种水质调控方式下春季参池环境及刺参肠道的细菌群落结构[J].大连海洋大学学报,2019,34(3):338-344. [49]LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning:current knowledge and future challenges[J].Science,2001,294(5543):804-808. [50]JIANG J W, ZHOU Z C, DONG Y, et al. Seasonal variations of immune parameters in the coelomic fluid of sea cucumber Apostichopus japonicus cultured in pond[J].Aquaculture Research,2017,48(4):1677-1687. [51]陈琪,武福源,郑纪勇,等.氧含量及附着面积对海洋底栖硅藻生长和胞外多聚物的影响[J].海洋学研究,2017,35(1):66-72. [52]王艺兵,储昭升,曾清如,等.扰动对三种典型藻类生长的影响[J].生态科学,2015,34(5):77-83. [53]潘华辰,杨怡君,屠汉超,等.水下曝气对水体分层效果的研究[J].机电工程,2016,33(1):68-72. [54]NICKELL L A, BLACK K D, HUGHES D J, et al. Bioturbation, sediment fluxes and benthic community structure around a salmon cage farm in Loch Creran, Scotland[J].Journal of Experimental Marine Biology and Ecology,2003,285/286:221-233. [55]李月寒,王育来,李建华,等.微污染水体夜间曝气控藻效果研究[J].环境工程,2012,30(6):39-43.