Fluxes of Nitrogen and Phosphorus at Sediment-Water Interface in Different Marine Polyculture Ponds
CHEN Zhong
Key Laboratory of Marine Biological Resources and Ecology, Liaoning Province, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
Abstract:In order to obtain basic information for the management of ecological health cultivation and environmental control of sediment-water quality in marine polyculture ponds, the concentrations of NO-2, NO-3, NH+4 and DIP at sediment-water surface in three different culture patterns including (1#) jellyfish Rhopilema esculentum+ Pacific white shrimp Litopenaeus vannamei+ razor calm Sinonovacula constricta, (2#) R. culentum+ L. vannamei+ Manila clam Ruditapes philippinarum, and (3#) R. culentum+ L. vannameiwere detected during the whole culture period from June to October, and the influxes of NO-X-N, NH+4-N and DIP were analyzed. The results showed that the NO-X-N mainly diffused from overlying water to sediment in the three polyculture ponds during whole aquaculture, except the pond 3# in the Oct. The NH+4-N mainly diffused from overlying water to sediment in ponds 1# and 2#, except the pond 2# in June. Compared to ponds1# and 2#, the influxes of NH+4-N at sediment-water surface greatly changed in the pond 3#, the NH+4-N diffused from overlying water to sediment in June and July, the NH+4-N released from sediment to overlying water in September and October. The DIP-P released from sediment to overlying water in the pond 2# during the whole aquaculture, and also in the pond 1# in the June, July and October, but reverse in August and September. The DIP-P diffused from overlying water to sediment in pond 3# from June to September but reverse in October. The findings indicate that the fluxes of nitrogen and phosphorus were affected by the bivalve clam in polyculture ponds, and meanwhile the benthic and water environment were improved.
[1] 付翔,郝锵,刘诚刚,等.象山港多品种养殖与富营养化状况的数值模拟[J].渔业科学进展,2012,33(1):1-9. [2] 唐金玉.鱼蚌综合养殖池塘养殖模式优化的研究[D].杭州:浙江大学,2016. [3] 李运奔,匡帅,王臻宇,等.东巢湖沉积物水界面氮、磷、氧迁移特征及意义[J].湖泊科学,2020,32(3):688-700. [4] 聂家琴,王东启,陈杰,等.我国典型潮间带沉积物-水界面无机氮源汇效应[J].环境科学,2018,39(9):4199-4205. [5] 施玉珍,陈树鸿,赵辉,等.珠江口海域沉积物-水界面营养盐释放特征研究[J].矿物岩石地球化学通报,2020,39(3):517-524. [6] 丘耀文,王肇鼎,高红莲,等.大亚湾养殖水域沉积物-海水界面营养盐扩散通量[J].热带海洋学报,1999,18(3):83-90. [7] 蔡立胜,方建光,董双林.桑沟湾养殖海区沉积物-海水界面氮、磷营养盐的通量[J].海洋水产研究,2004(4):57-64. [8] 李占东,林钦,黄洪辉.大鹏澳网箱养殖海域磷酸盐在沉积物-海水界面交换速率的研究[J].南方水产,2006,2(6):25-30. [9] 蒋增杰,崔毅,陈碧鹃.唐岛湾网箱养殖区沉积物-水界面溶解无机氮的扩散通量[J].环境科学,2007,28(5):1001-1005. [10] 胡博,谭丽菊,王江涛.昌黎近岸海域扇贝养殖区沉积物-水界面溶解无机氮磷及尿素扩散通量研究[J].海洋环境科学,2017,36(6):864-870. [11] 魏南,余德光,王广军,等.持续充氧对养殖池塘上覆水-泥水界面-沉积物间隙水中离子垂直分布的影响[J].水产学报,2017,41(7):1116-1125. [12] 郑忠明,董双林,白培峰,等.刺参不同养殖模式实验围隔内沉积物——水界面营养盐通量研究[J].中国海洋大学学报(自然科学版),2009,39(2):209-214. [13] 郑忠明.刺参养殖池塘沉积物—水界面营养盐通量的研究[D].青岛:中国海洋大学,2009. [14] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.海洋监测规范第4部分:海水分析:GB 17378.4—2007[S]. 北京: 中国标准出版社,2007:109-119. [15] 王圣瑞.湖泊沉积物-水界面过程:氮磷生物地球化学[M].北京:科学出版社,2013:1-9. [16] 郭永坚,沈勇平,王芳,等.草鱼不同养殖模式实验围隔内沉积物-水界面营养盐通量的研究[J].水生生物学报,2013,37(4):595-605. [17] MEYSMAN F J R, MIDDELBURG J J, HEIP C H R.Bioturbation:a fresh look at Darwin′s last idea[J]. Trends in Ecology & Evolution,2006,21(12):688-695. [18] MAIRE O, LECROART P, MEYSMAN F, et al. Quantification of sediment reworking rates in bioturbation research:a review[J]. Aquatic Biology,2008,2(3):219-238. [19] GILBERT F, HULTH S, GROSSI V, et al. Redox oscillation and benthic nitrogen mineralization within burrowed sediments:an experimental simulation at low frequency[J]. Journal of Experimental Marine Biology and Ecology,2016,482:75-84. [20] 王摆,田甲申,董颖,等.海蜇-对虾-缢蛏-牙鲆综合养殖池塘的食物网分析[J].水产科学,2019,38(3):327-332. [21] 段金明,江兴龙,陈宏静,等.生物强化生物滤池去除海水养殖废水中氨氮[J].环境科学与技术,2019,42(1):37-42. [22] 宋霖霞,王素英.海水养殖废水中氨氮降解菌的诱变及培养条件[J].水产科学,2011,30(3):148-151. [23] 王功芹,张硕,李大鹏,等.环境因子对海州湾表层沉积物中氨氮吸附-解吸的影响[J].生态环境学报,2017,26(1):95-103. [24] SONDERGAARD M, JENSEN P J, JEPPESEN E. Retention and internal loading of phosphorus in shallow,eutrophic lakes[J]. The Scientific World Journal,2001,1:427-442. [25] GONG M D, JIN Z F, WANG Y, et al. Coupling between iron and phosphorus in sediments of shallow lakes in the middle and lower reaches of Yangtze River using diffusive gradients in thin films (DGT)[J]. Journal of Lake Sciences,2017,29(5):1103-1111. [26] 张雷.生物扰动下湖泊沉积物-水界面特征变化与磷的迁移转化[D].北京:中国科学院大学,2010:93-94. [27] HUPFER M, LEWANDOWSKI J. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology[J]. International Review of Hydrobiology,2008,93(4/5):415-432. [28] 龚梦丹,金增锋,王燕,等.长江中下游典型浅水湖泊沉积物水界面磷与铁的耦合关系[J].湖泊科学,2017,29(5):1103-1111. [29] 宋金明,李延,朱仲斌.Eh和海洋沉积物氧化还原环境的关系[J].海洋通报,1990,9(4):33-39. [30] SONG C L, CAO X Y, ZHOU Y Y, et al. Nutrient regeneration mediated by extracellular enzymes in water column and interstitial water through a microcosm experiment[J]. Science of the Total Environment,2019,670:982-992.