Metabolism and Hepatotoxicity of Mebendazole in Allogenic Silver Crucian Carp
SU Meizhen1, ZHANG Yitong2, WANG Hao3, LYU Liqun1
1. National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; 2. Key Laboratory of Freshwater Aquatic Genetic Resources for Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; 3. National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai 201306, China
Abstract:Allogenic silver crucian carp Carassius auratus gibelio with body weight of (90±20) g was intragastrically administered with mebendazole at a dose of 20 mg/kg, 10 mg/kg or 5 mg/kg, while the control group was orally administered with formic acid,at water temperature of (20±2) ℃ and blood was collected from caudal vein at 1, 2, 4, 6, 10, 24, 48 and 84 hours after administration. Potassium oxalate anticoagulant (anticoagulant∶plasma=1∶10,V/V) was added immediately into the blood samples which then were centrifugated at 4000 rpm for 10 min. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione catalase (GSH-PX), glutathione transaminase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (AKP) and the transcriptional expression levels of SOD and CAT genes were compared in the hepatopancreas and kidney of allogenic silver crucian carp at 0, 24 and 48 hours after administration. It was found that there were similar changes in the three tissues after administration, with the maximal content of mebendazole in three tissues of crucian carp in 24 hours, and then gradually metabolized, with the maximum in hepatopancreas, followed by kidney, and the minimum in blood. The maximal concentration of mebendazole in hepatopancreas was about 1.3 times as that in kidney and 45 times as that in blood under administration at 20 mg/kg. The contents of glutathione catalase in liver and pancreas of tobendazole-treated fish were decreased in a time-dependent manner, while the activities of alkaline phosphatase, catalase, superoxide dismutase, glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase in blood were increased first and then decreased. The findings indicated that oral administration of 20 mg/kg mebendazole had a negative impact on various indicators, damaging normal detoxification and antioxidant function, which provides theoretical support for the safe use of mebendazole in aquaculture.
[1]唐立超,黄剑英,郑淑凤,等.甲苯咪唑片和咀嚼片质量研究与分析[J].药物分析杂志,2018,38(6):1076-1080. [2]Swanepoel E, Liebenberg W, De Villiers M M. Quality evaluation of generic drugs by dissolution test:changing the usp dissolution medium to distinguish between active and non-active mebendazole polymorphs[J]. European Journal of Pharmaceutics and Biopharmaceutics,2003,55(3):345-349. [3]曹爱英.水产品中甲苯咪唑残留量测定方法的研究[D].福州:福建农林大学,2008. [4]刘海侠,于三科.我国鱼类寄生虫病现状及防治对策[J].动物医学进展,2006,27(5):103-105. [5]韩飞,张曼,张周,等.甲苯咪唑在水产养殖中的研究进展[J].中国畜牧兽医文摘,2014,30(7):197-198. [6]白玲,赵丕烈,陈东平.甲苯咪唑的不良反应[J]. 医药导报,1999(2):128. [7]景宝洁.甲苯咪唑引起肝损害[J].药物不良反应杂志,2007,9(6):433. [8]殷为勇,郑荣远,杨学志,等.甲苯咪唑药物不良反应文献分析[J].药物流行病学杂志,2008,17(2):84-87. [9]弓飞龙.甲苯咪唑对黄河鲤抗氧化系统和Na+-K+-ATPase活性影响的研究[D].郑州:河南农业大学,2009. [10]杨丽华,方展强,郑文彪,等.镉对鲫鱼鳃和肝脏超氧化物歧化酶活性的影响[J].安全与环境学报,2003,3(3):13-16. [11]Liu J F, Zhang M L, Lu L Q. Tissue metabolism, hematotoxicity, and hepatotoxicity of trichlorfon in Carassius auratus gibelio after a single oral administration[J]. Frontiers in Physiology,2018,9:551. [12]陈晨,黄峰,舒秋艳,等.共轭亚油酸对草鱼生长、肌肉成分、谷草转氨酶及谷丙转氨酶活性的影响[J].水生生物学报,2010,34(3):647-651. [13]郭东方,刘永涛,艾晓辉,等.甲苯咪唑在银鲫体内的药代动力学研究[J].中国水产科学,2009,16(3):434-441. [14]胥宁,刘永涛,艾晓辉,等.甲苯咪唑在团头鲂体内主要代谢物及其变化规律研究[J].淡水渔业,2013,43(6):39-44. [15]齐元花.复方甲苯咪唑在鲫体内的药物动力学研究[D].武汉:华中农业大学,2010. [16]周宏正,赵燕楠,张祎桐,等.盐酸氯苯胍在异育银鲫体内的药代动力学研究[J].上海海洋大学学报,2018,27(6):916-923. [17]周程,吴南翔,范宏亮,等.TCS和PCB153联合暴露对斑马鱼肝脏SOD和MDA的影响[J].预防医学,2019,31(4):330-334. [18]任洪涛,林霖. Cr6+对草鱼脑和肝胰脏组织结构及其超氧化物歧化酶活性的影响[J].水产科学,2016,35(6):644-648. [19]Dogan D, Can C, Kocyigit A, et al. Dimethoate-induced oxidative stress and DNA damage in Oncorhynchus mykiss[J]. Chemosphere,2011,84(1):39-46. [20]Liu Y, Wang J, Wei Y, et al. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver[J]. Aquatic Toxicology,2008,89(4):242-250. [21]Moreno I, Pichardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally [J]. Toxicon,2005,45(4):395-402. [22]孙立梅,陈立侨,李二超,等.高比例棉粕饲料中补充蛋氨酸对中华绒螯蟹幼蟹摄食、生长及抗氧化酶活性的影响[J].水生生物学报,2013,37(2):336-343. [23]吕昆伦,刘丹丹,张红绪,等. 水生动物体内谷胱甘肽过氧化物酶的功能及对环境胁迫的响应[J]. 水产科学,2015,34(6):399-404. [24]Jin C Y, Luo T, Fu Z W, et al. Chronic exposure of mice to low doses of imazalil induces hepatotoxicity at the physiological, biochemical, and transcriptomic levels[J]. Environmental Toxicology,2018,33(6):650-658. [25]詹付凤,赵欣平. 重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响[J].四川动物,2007,26(3):641-643. [26]何忠伟,宫春光,殷蕊,等.水中Mn(Ⅱ)对大菱鲆幼鱼生长及碱性磷酸酶和超氧化物歧化酶活性的影响[J]. 水产科学,2016,35(4):364-369. [27]唐婉琴,张江惠,袁伦强.水体锰暴露对草鱼碱性磷酸酶、酸性磷酸酶及代谢率的影响[J].重庆师范大学学报:自然科学版,2018,35(3):69-74. [28]陈玉春,顾雪飞,刘敏.5种中草药对鲤血清谷丙转氨酶、谷草转氨酶及红细胞过氧化氢酶活性的影响[J]. 淡水渔业,2007,37(5):11-13. [29]陈鹏飞,杨德强,邹红,等.两种中草药组方对鲫鱼肝脏转氨酶的影响[J].饲料工业,2005,26(6):28-31. [30]卢敬让,赖伟,堵南山.镉对中华绒螯蟹肝R-细胞亚显微结构及血清谷丙转氨酶(SGPT)活力的影响[J].青岛海洋大学学报,1989,19(2Ⅱ):61-68.