Effects of Different Dietary Carbohydrate Sources on Growth Performance, Body Composition and Digestive Enzyme Activities of Juvenile Green Crab Scylla paramamosain
1.Key Laboratory of Marine Biotechnology of Guangxi, Guangxi Zhuang Autonomous Region Institute of Oceanology, Beihai 536000 China; 2.College of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
Abstract:Juvenile green crab Scylla paramamosain with average body weight of (0.012±0.000) g were reared in plastic buckets (20 cm in diameter and 20 cm in depth) with 1—2 cm fine sand and 5 cm2 tiles at bottom and fed diets containing seven carbohydrate (CBH) sources (glucose, sucrose, dextrin, tapioca starch, corn starch, gelatinized tapioca starch, and gelatinized corn starch) for 3 weeks to investigate the effects of dietary CBH sources on growth performance, body composition and digestive enzyme activities of green crab. The results showed that the growth performance of the juvenile was significantly influenced by different CBH sources (P<0.05), the maximal weight gain rate (WGR) and specific growth rate (SGR) in the green crab fed gelatinized tapioca starch, significantly higher than those in other groups (P<0.05) and with the descending order of WGR and SGR as: gelatinized cassava starch > gelatinized corn starch > cassava starch > corn starch > dextrin > sucrose > glucose. The minimal survival ratio (SR) was observed in glucose group, significantly lower than that in the other groups (P<0.05). The body composition analysis indicated that dietary CBH sources had significant effects on body ether extract content and body protein contents (P<0.05), without significant differences in moisture, and ash content (P>0.05). There were significant effects of different dietary CBH sources on digestive enzyme activities in the green crab juveniles (P<0.05), indicating that green crab had higher bioavailability of macromolecule carbohydrate sources than that of micromolecule CBH sources. It is concluded that gelatinized cassava starch is the optimal carbohydrate sources for green crab juveniles.
[1]檀东飞,吴国欣,林跃鑫,等.锯缘青蟹营养成分[J].福建师范大学学报:自然科学版,2000,16(4):79-84. [2]韩耀龙.拟穴青蟹健康养殖模式研究[D].汕头:汕头大学,2008:7-10. [3]Stone D A J. Dietary carbohydrate utilization by fish [J].Reviews in Fisheries Science,2003,11(4):337-369. [4]李孟均,陈春娜.饲料中的糖对水产动物的影响[J].北京水产,2008(2):57-59. [5]王金胜,王冬梅,吕淑霞.生物化学[M].北京:科学出版社,2011:214-258. [6]吴小易,刘永坚,田丽霞,等.黄鳍鲷幼鱼对几种不同糖源的利用[J].水产学报,2007,31(4):463-471. [7]董兰芳,张琴,程光平,等.不同糖源饲料对卵形鲳鲹(Trachinotus ovatus)生长、体组成、血糖水平和肝脏糖酵解酶活力的影响[J].渔业科学进展,2016,37(3):22-29. [8]王美雪,郭冉,夏辉,等.七种不同结构糖源对凡纳滨对虾三大营养物质代谢的影响[J].水产学报,2016,40(4):626-633. [9]李弋,周飘苹,邱红,等.饲料中糖源对大黄鱼生长性能及消化酶、糖代谢关键酶活性的影响[J]. 动物营养学报,2015,27(11):3438-3447. [10]宋娇,姜海波,姜志强,等.饲料中不同糖源对杂交鲟幼鱼生长性能、血清生化指标和肌肉营养成分的影响[J].大连海洋大学学报,2016,31(1):58-64. [11]Niu J, Lin H Z, Jiang S G, et al. Effect of seven carbohydrate sources on juvenile Penaeus monodon growth performance, nutrient utilization efficiency and hepatopancreas enzyme activities of 6-phosphogluconate dehydrogenase, hexokinase and amylase [J]. Animal Feed Science and Technology,2012,174(1/2):86-95. [12]Blair T, Castell J, Neil S, et al.Evaluation of microdiets versus live feeds on growth, survival and fatty acid composition of larval haddock (Melanogrammus aeglefinus)[J]. Aquaculture,2003,225(1/4):451-461. [13]Association of Official Analytical Chemists International(AOAC).Official Methods of Analysis of Official Analytical Chemists International [M]. 16th ed. Arlington:Association of Official Analytical Chemists,1995. [14]江星.中华绒螯蟹饲料中适宜糖源、蛋白能量比及其原料消化利用率的研究[D].上海:华东师范大学,2013:67-69. [15]Mali B. Nutrition of Penaeus merguiensis and Penaeus idicus[J]. Reviews in Fisheries Science,1998,6(1/2):69-78. [16]郭冉,刘永坚,田丽霞,等.不同糖源对南美白对虾Penaeuse vannamei生长、成活率和虾体组成的影响[J].中山大学学报:自然科学版,2005,44(3):90-92. [17]张琴,许明珠,程光平,等.不同糖源对方格星虫稚虫生长、成活率及体组成的影响[J].渔业科学进展,2013,34(5):82-88. [18]吴彬,彭淇,陈斌,等.日粮中不同糖源对吉富罗非鱼(Oreochromis niloticus)稚鱼养殖效果与机理研究[J].海洋与湖沼,2013,44(4):1050-1055. [19]Furuichi M,Yone Y.Changes in activities of hepatic enzymes related to carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance-tests[J].Bull Jpn Soc Sci Fish,1982,48(3):463-466. [20]张丽丽,周歧存,程怡秋,等.不同糖源对方斑东风螺生长、饲料利用和消化酶活性的影响[J]. 广东海洋大学学报,2009,29(4):14-18. [21]Shiau S Y, Peng C Y. Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon,reared in seawater[J]. Aquaculture,1992,101(3/4):241-250. [22]Dend D F, Refstie S, Hung S O. Glycemic and glycosuric responses in white sturgeon Acipenser transmontanus after oral administration of simple and complex carbohydrates[J]. Aquaculture,2001,199(1/2):107-117. [23]张世亮.饲料中糖结构、糖水平及糖脂比对瓦氏黄颡鱼幼鱼生长及糖代谢的影响[D].青岛:中国海洋大学,2011:42-45. [24]Cruz-suarez L E, Ricque-marie D, Pinal-mansilla J D, et al. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact [J].Aquaculture,1994,123(3/4):349-360. [25]Hofer S C. Inhibition of trout and carp α-amylase by wheat[J].Aquaculture,1985,48(3/4):277-283. [26]褚志鹏,危起伟,杜浩.不同糖源对达氏鲟幼鱼生长、体成分及生理生化指标的影响[J].中国水产科学,2017,24(2):284-294. [27]王耀华.中华绒螯蟹幼蟹对饮料碳水化合物利用的研究[D].北京:中国科学院大学,2010:27-30. [28]王蔚芳,麦康森,张文兵,等.饲料中不同糖源对皱纹盘鲍体脂组成的影响[J].中国海洋大学学报:自然科学版,2009,39(2):221-227. [29]Moyano F J, Dlaz M, Alarcon F J, et al.Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata)[J].Fish Physiology and Biochemistry,1996,15(2):121-130. [30]范泽,王安琪,孙金辉,等.不同木薯变性淀粉对鲤鱼生长及糖代谢的影响[J].水产科学,2018,37(1):1-7. [31]张琴,许明珠,童潼,等.饲料中不同糖源对方格星虫稚虫日增重和消化酶的影响[J]. 南方水产科学,2014,10(1):21-26. [32]董兰芳,张琴,许明珠,等.不同糖源对卵形鲳鲹(Trachinotus ovatus)日增重、饲料利用和消化酶活性的影响[J].渔业科学进展,2016,37(3):42-48. [33]Gangadhara B N, Eesha M C, Varghese T J, et al. Effect of varying protein and lipid levels on the growth of rohu, Labeo rohita [J].Asian Fisheries Society,1997,10(2):139-147.